2025届贵州省清镇市数学九年级第一学期开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)边长为4的等边三角形的面积是( )
A.4B.4C.4D.
2、(4分)下列一元二次方程没有实数根的是( )
A.B.C.D.
3、(4分)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:
则该二次函数图象的对称轴为( )
A.y轴B.直线x=C.直线x=1D.直线x=
4、(4分)下列方程,是一元二次方程的是( )
①, ②, ③, ④
A.①②B.①②④C.①③④D.②④
5、(4分)计算:=( )
A.B.4C.2D.3
6、(4分)甲,乙,丙,丁四人进行射击测试,记录每人10次射击成情,得到各人的射击成绩方差如表中所示,则成绩最稳定的是( )
A.甲B.乙C.丙D.丁
7、(4分)直角三角形中,两直角边分别是6和8.则斜边上的中线长是( )
A.B.C.D.
8、(4分)如果分式有意义,那么x的取值范围是( )
A.x≠0B.x≤﹣3C.x≥﹣3D.x≠﹣3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)方程的解是________.
10、(4分)已知菱形ABCD的对角线长度是8和6,则菱形的面积为_____.
11、(4分)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是______(填“甲”或“乙”)
12、(4分)商店购进一批文具盒,进价每个4元,零售价每个6元,为促销决定打折销售,但利润率仍然不低于20%,那么该文具盒实际价格最多可打___________折销售
13、(4分)如图,在▱ABCD中,再添加一个条件_____(写出一个即可),▱ABCD是矩形(图形中不再添加辅助线)
三、解答题(本大题共5个小题,共48分)
14、(12分)南江县在“创国家级卫生城市”中,朝阳社区计划对某区域进行绿化,经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.求甲、乙两工程队每天能完成绿化的面积是多少?
15、(8分)计算:2×÷3﹣(﹣2.
16、(8分)在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是斜边AB和直角边BC上的点,把△ABC沿着直线DE折叠,顶点B的对应点是点B′.
(1)如图①,如果点B′和点A重合,求CE的长.
(2)如图②,如果点B′落在直角边AC的中点上,求BE的长.
17、(10分)如图,一学校(点M)距公路(直线l)的距离(MA)为1km,在公路上距该校2km处有一车站(点N),该校拟在公路上建一个公交车停靠点(点p),以便于本校职工乘车上下班,要求停靠站建在AN之间且到此校与车站的距离相等,请你计算停靠站到车站的距离.
18、(10分)已知x=2+,求代数式的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:
则这50名学生这一周在校的平均体育锻炼时间是____小时.
20、(4分)若反比例函数y=的图象在二、四象限,则常数a的值可以是_____.(写出一个即可)
21、(4分)数据1,2,3,4,5的方差是______.
22、(4分)若是完全平方式,则的值是__________.
23、(4分)如图,正方形 ABCD 的顶点 C, A 分别在 x 轴, y 轴上, BC 是菱形 BDCE 的对角线.若 BC 6, BD 5, 则点 D 的坐标是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组:,并写出它的所有整数解.
25、(10分)如图,在边长为1个单位长度的小正方形组成的网格中,的顶点均在格点上,点A的坐标为,点B的坐标为,点C的坐标为.
(1)以点C为旋转中心,将旋转后得到,请画出;
(2)平移,使点A的对应点的坐标为,请画出;
(3)若将绕点P旋转可得到,则点P的坐标为___________.
26、(12分)已知,一次函数的图象与x轴、y轴分别交于点A和B.
求A,B两点的坐标,并在如图的坐标系中画出函数的图象;
若点C在第一象限,点D在x轴的正半轴上,且四边形ABCD是菱形,直接写出C,D两点的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
如图,根据等边三角形三线合一的性质可以求得高线AD的长度,根据BC和AD即可求得三角形的面积.
【详解】
解:如图,∵△ABC是等边三角形,AD⊥BC,
∴BD=DC=2,
在Rt△ABD中,AB=4,BD=2,
∴AD=,
∴S△ABC=BC·AD==4,
故选C.
本题考查了等边三角形的性质、勾股定理有应用、三角形的面积等,熟练掌握相关性质以及定理是解题的关键.
2、B
【解析】
通过计算方程根的判别式,满足即可得到结论.
【详解】
解:A、,方程有两个相等的实数根,故本选项错误;
B、,方程没有实数根,故本选项正确;
C、,方程有两个不相等的实数根,故本选项错误;
D、,方程有两个不相等的实数根,故本选项错误;
故答案为B.
本题考查了根的判别式,熟练掌握一元二次方程的根与判别式的关系是解题的关键.
(1)当,方程有两个不相等的两个实数根;
(2)当,方程有两个相等的两个实数根;
(3)当时,方程无实数根.
3、D
【解析】
观察表格可知:当x=0和x=3时,函数值相同,∴对称轴为直线x= .故选D.
4、D
【解析】
只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.结合题意进行分析即可得到答案.
【详解】
①,含有两个未知数,不是一元二次方程;②,是一元二次方程;③不是一元二次方程;④ ,是一元二次方程;由此知②④是一元二次方程,故选D.
本题考查一元二次方程的定义,解题的关键是掌握一元二次方程的定义.
5、D
【解析】
先利用二次根式的性质化简,再合并同类二次根式得出答案.
【详解】
解:
=+2
=3.
故选:D.
此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.
6、D
【解析】
根据方差的性质即可判断.
【详解】
∵丁的方差最小,故最稳定,
选D.
此题主要考查方差的应用,解题的关键是熟知方差的性质.
7、C
【解析】
利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
解:由勾股定理得,斜边==10,
所以,斜边上的中线长=×10=1.
故选:C.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.
8、D
【解析】
根据分式有意义的条件可得x+3≠0,再解即可.
【详解】
由题意得:x+3≠0,
解得:x≠3,
故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
推出方程x-3=0或x=0,求出方程的解即可.
【详解】
解:∵,
即x=0或x+3=0,
∴方程的解为.
本题主要考查对解一元二次方程,解一元一次方程,等式的性质等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.
10、1
【解析】
根据菱形的面积等于两条对角线乘积的一半即可求解.
【详解】
∵菱形的对角线长的长度分别为6、8,
∴菱形ABCD的面积S=BD•AC=×6×8=1.
故答案为:1.
本题考查了菱形的性质,熟知菱形的面积等于两条对角线乘积的一半是解决问题的关键.
11、甲
【解析】
由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,
则S2甲
12、8
【解析】
设该文具盒实际价格可打x折销售,根据利润率不低于20%列不等式进行求解即可得.
【详解】
设该文具盒实际价格可打x折销售,由题意得:
6×-4≥4×20%,
解得:x≥8,
故答案为8.
本题考查了一元一次不等式的应用,弄清题意,找准不等关系列出不等式是解题的关键.
13、AC=BD
【解析】
根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.
【详解】
添加的条件是AC=BD,
理由是:∵AC=BD,四边形ABCD是平行四边形,
∴平行四边形ABCD是矩形,
故答案为:AC=BD
本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形.
三、解答题(本大题共5个小题,共48分)
14、甲、乙两工程队每天能完成绿化的面积分别是100m1、50m1.
【解析】
设乙工程队每天能完成绿化的面积是xm1,根据在独立完成面积为400m1区域的绿化时,甲队比乙队少用4天,列方程求解即可.
【详解】
设乙工程队每天能完成绿化的面积是x(m1),根据题意得
,
解得:x=50,
经检验:x=50是原方程的解,且符合实际意义,
所以甲工程队每天能完成绿化的面积是50×1=100(m1),
答:甲、乙两工程队每天能完成绿化的面积分别是100m1、50m1.
本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
15、
【解析】
利用二次根式的乘除法则和完全平方公式计算.
【详解】
原式=2××× -(2-2+3)-2
=-1+2-2
=-1.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
16、 (1)CE的长为;(2)BE=.
【解析】
(1)如图(1),设CE=x,则BE=8﹣x;根据勾股定理列出关于x的方程,解方程即可解决问题;
(2)如图(2),首先求出CB′=3;类比(1)中的解法,设出未知数,列出方程即可解决问题.
【详解】
(1)如图(1),设CE=x,则BE=8﹣x;
由题意得:AE=BE=8﹣x
由勾股定理得:x2+62=(8﹣x)2,
解得:x=,
即CE的长为:;
(2)如图(2),
∵点B′落在AC的中点,
∴CB′=AC=3;
设CE=x,类比(1)中的解法,可列出方程:x2+32=(8﹣x)2
解得:x=.
即CE的长为:,
∴BE==.
该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系;借助勾股定理等几何知识点来分析、判断、推理或解答.
17、停靠站P到车站N的距离是
【解析】
【分析】连接PM,则有PM=PN,在Rt△AMN中根据勾股定理可求出AN的长,设NP为x,则MP=NP=x,AP=-x,在Rt△AMP中,由勾股定理求出x的值即可得.
【详解】连接PM,则有PM=PN,
在Rt△AMN中,∠MAN=90°,MN=2,AM=1,∴AN=,
设NP为x,则MP=NP=x,AP=-x,
在Rt△AMP中,∠MAP=90°,由勾股定理有:MP2=AP2+AM2,
∴12+(-x)2=x2,
∴x=,
所以,停靠站P到车站N的距离是.
【点睛】本题考查了勾股定理的应用, 正确添加辅助线、熟练应用勾股定理是解题的关键.
18、
【解析】
把代入代数式,再根据平方差公式、完全平方公式计算即可求解.
【详解】
解:
本题考查了二次根式的化简求值,解题的关键是掌握平方差公式、完全平方公式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、6.4
【解析】
试题分析: 体育锻炼时间=(小时).
考点:加权平均数.
20、2(答案不唯一).
【解析】
由反比例函数y=的图象在二、四象限,可知a-3<0,据此可求出a的取值范围.
【详解】
∵反比例函数y=的图象在二、四象限,
∴a-3<0,
∴a<3,
∴a可以取2.
故答案为2.
本题考查了反比例函数的图像与性质,对于反比例函数(k是常数,k≠0),当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当 k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.
21、1
【解析】
根据方差的公式计算.方差.
【详解】
解:数据1,1,3,4,5的平均数为,
故其方差.
故答案为:1.
本题考查方差的计算.一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
22、
【解析】
根据完全平方公式即可求解.
【详解】
∵是完全平方式,
故k=
此题主要考查完全平方式,解题的关键是熟知完全平方公式的特点.
23、.
【解析】
过点作于点,根据四边形是菱形可知,可得出是等腰三角形,即可得到,再根据勾股定理求出即可得出结论.
【详解】
过点作于点,
四边形是菱形,
,
是等腰三角形,
点是的中点,
,
,
四边形是正方形,
=6,
6+4=10,
.
故答案为:.
本题考查的是正方形的性质,根据题意作出辅助线,利用菱形的性质判断出是等腰三角形是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、解集为-4<x<2,不等式组的整数解是:﹣3,﹣2,﹣1、1.
【解析】
分别解出两个不等式,然后得到公共解集,再找出整数解即可
【详解】
,
∵解不等式①得:x>﹣4,
解不等式②得:x<1,
∴原不等式组的解集为:﹣4<x<2,
∴不等式组的整数解是:﹣3,﹣2,﹣1、1.
本题主要考查求不等式组的整数解,关键在于解出不等式组的解
25、(1)见解析;(2)见解析;(3)(-1,0).
【解析】
(1)利用网格特点和旋转的性质画出A、B、C的对应点A1、B1、C1即可;
(2)根据点A和A2的坐标特征确定平移的方向和距离,利用次平移规律写出点B2、C2的坐标,然后描点即可;、
(3)连接A1A2、C1C2、B1B2,它们都经过点(-1,0),从而得到旋转中心点P.
【详解】
解:(1)如图,△A1B1C1为所作;
(2)如图,△A2B2C2为所作.
(3)△A1B1C1绕点P旋转可得到△A2B2C2,则点P点坐标为(-1,0).
故答案为:(1)见解析;(2)见解析;(3)(-1,0).
本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
26、 (1) A,B,画图见解析;(2),.
【解析】
(1)先求出A,B两点的坐标,再画函数图象;(2)根据图形,结合勾股定理和菱形性质推出边长,得到C.D的坐标.
【详解】
解:将代入,可得;
将,代入,可得;
点A的坐标为,点B的坐标为,
如图所示,直线AB即为所求;
由点A的坐标为,点B的坐标为,可得
,,
中,,
四边形ABCD是菱形,
,
,
,.
本题考核知识点:一次函数与菱形. 解题关键点:熟记菱形的判定与性质.
题号
一
二
三
四
五
总分
得分
批阅人
x
﹣1
0
1
2
3
y
5
1
﹣1
﹣1
1
统计量
甲
乙
丙
丁
方差
0.60
0.62
0.50
0.44
时间(小时)
5
6
7
8
人数
10
15
20
5
2025届贵州省安顺市九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2025届贵州省安顺市九年级数学第一学期开学达标检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年贵州省铜仁市碧江区九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年贵州省铜仁市碧江区九年级数学第一学期开学达标检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年贵州省清镇市卫城中学数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年贵州省清镇市卫城中学数学九上开学经典模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。