所属成套资源:苏科版数学七年级上册全程通关培优(专项卷+章节复习+期中期末备考)(专项拔高卷)特训(学生版+解析)
- 苏科版数学七年级上册全程通关培优(专项卷+章节复习+期中期末备考)第4章一元一次方程(拔高卷)特训(学生版+解析) 试卷 1 次下载
- 苏科版数学七年级上册全程通关培优(专项卷+章节复习+期中期末备考)第4章一元一次方程(提优卷)特训(学生版+解析) 试卷 1 次下载
- 苏科版数学七年级上册全程通关培优(专项卷+章节复习+期中期末备考)第5章走进图形世界(拔高卷)特训(学生版+解析) 试卷 0 次下载
- 苏科版数学七年级上册全程通关培优(专项卷+章节复习+期中期末备考)第5章走进图形世界(提优卷)特训(学生版+解析) 试卷 0 次下载
- 苏科版数学七年级上册全程通关培优(专项卷+章节复习+期中期末备考)第6章平面图形的认识(一)(拔高卷)特训(学生版+解析) 试卷 0 次下载
苏科版数学七年级上册全程通关培优(专项卷+章节复习+期中期末备考)第6章平面图形的认识(一)(提优卷)特训(学生版+解析)
展开这是一份苏科版数学七年级上册全程通关培优(专项卷+章节复习+期中期末备考)第6章平面图形的认识(一)(提优卷)特训(学生版+解析),共33页。试卷主要包含了56,5,等内容,欢迎下载使用。
考试时间:120分钟 试卷满分:100分 难度系数:0.56
姓名:___________班级:___________考号:___________
一.选择题(共10小题,满分20分,每小题2分)
1.(2分)(2022秋•海门市期末)如图,将一副三角板的直角顶点重合放置于A处(两块三角板可以在同一平面内自由转动),则下列结论一定成立的是( )
A.∠BAD≠∠EACB.∠DAC﹣∠BAE=45°
C.∠DAC+∠BAE=180°D.∠DAC﹣∠BAE=90°
2.(2分)(2022秋•惠山区校级期末)下列说法错误的是( )
A.对顶角相等
B.两点之间所有连线中,线段最短
C.等角的补角相等
D.过任意一点P,只能画一条直线
3.(2分)(2022秋•连云港期末)如图,点C、D分别为线段AB(端点A、B除外)上的两个不同的动点,点D在点C的右侧,图中所有线段的和等于60cm,且AB=3CD,则CD的长度是( )
A.6cmB.8cmC.10cmD.12cm
4.(2分)(2022秋•海安市期末)将一副三角尺按不同位置摆放.下列摆放方式中α与β互补的是( )
A.B.
C.D.
5.(2分)(2022秋•常州期末)已知线段AB=15cm,C是线段AB上的一点.若在射线AB上取一点D,使得C是AD的中点,且,则线段AC的长度是( )
A.5cmB.3,5cmC.9cmD.5,9cm
6.(2分)(2022秋•鼓楼区期末)如图,∠BOC在∠AOD的内部,且∠BOC=x°,∠AOD=y°,则图中所有角的度数之和为(注:图中所有角均指小于180°的角)( )
A.x+3yB.2x+2yC.3x+yD.3y﹣x
7.(2分)(2022秋•姑苏区校级期末)下列说法正确的是( )
A.若AC=BC,则点C为线段AB中点
B.把弯曲的公路改直,就能缩短路程,数学原理是“两点确定一条直线”
C.已知A,B,C三点在一条直线上,若AB=2,BC=4,则AC=6
D.已知C,D为线段AB上两点,若AC=BD,则AD=BC
8.(2分)(2021秋•秦淮区期末)如图,点A、B、C在同一直线上,H为AC的中点,M为AB的中点,N为BC的中点,则下列说法:①MN=HC;②MH=(AH﹣HB);③MN=(AC+HB);④HN=(HC+HB),其中正确的是( )
A.①②B.①②④C.②③④D.①②③④
9.(2分)(2022秋•姑苏区校级期末)将一张正方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为B′、D′,若∠B′AD′=16°,则∠EAF的度数为( )
A.40°B.45°C.56°D.37°
10.(2分)(2019秋•扬州期末)下列生活实例中,数学原理解释错误的一项是( )
A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线
B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短
C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线
D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短
二.填空题(共10小题,满分20分,每小题2分)
11.(2分)(2022秋•惠山区校级期末)钟面角是指时钟的时针和分针所成的角.例如:六点钟的时候,时针与分针所成钟面角为180°;七点钟的时候,时针与分针所成钟面角为150°.那么从六点钟到七点钟这一个小时内,哪些时刻时针与分针所成钟面角为100°?请写出具体时刻: .(结果形如6点分)
12.(2分)(2022秋•秦淮区期末)如图,C为线段AB上一点,点E、F分别是线段AC、CB的中点,AB=8,则线段EF的长为 .
13.(2分)(2017秋•滨海县期末)如图,在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB这一步骤的画图依据,甲同学认为是两点确定一条直线,乙同学认为是两点之间线段最短.你认为 同学的说法是正确的.
14.(2分)(2020秋•邗江区校级月考)3:30时钟表上的时针与分针的夹角是 度.
15.(2分)(2022秋•高新区期末)如图,有公共端点P的两条线段MP,NP组成一条折线M﹣P﹣N,若该折线M﹣P﹣N上一点Q把这条折线分成相等的两部分,我们把这个点Q叫做这条折线的“折中点”,已知D是折线A﹣C﹣B的“折中点”,E为线AC的中点,CD=1,CE=3,则线段BC的长为 .
16.(2分)(2022秋•兴化市校级期末)若一个角的补角等于它的余角4倍,则这个角的度数是 度.
17.(2分)(2022秋•句容市校级期末)如图,在∠AOB内部作OC⊥OB,OD平分∠AOB,若∠AOB=130°,则∠COD= .
18.(2分)(2022秋•秦淮区期末)如图,A、B是河l两侧的两个村庄,现要在河l上修建一个抽水站,使它到A、B两村庄的距离之和最小.数学老师说:连接AB,则线段AB与l的交点C即为抽水站的位置.其理由是: .
19.(2分)(2021秋•鼓楼区校级期末)如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC= 时,AB所在直线与CD所在直线互相垂直.
20.(2分)(2021秋•秦淮区期末)一副三角板AOB与COD如图1摆放,且∠A=∠C=90°,∠AOB=60°,∠COD=45°,ON平分∠COB,OM平分∠AOD.当三角板COD绕O点顺时针旋转(从图1到图2).设图1、图2中的∠NOM的度数分别为α,β,α+β= 度.
三.解答题(共8小题,满分60分)
21.(6分)(2022秋•姑苏区校级期末)如图,直线AB,CD相交于点O,OM⊥AB.
(1)若∠1=40°,∠2=30°,求∠NOD的度数;
(2)如果ON与CD互相垂直,那么∠1=∠2吗?请说明理由.
22.(6分)(2022秋•惠山区校级期末)如图,已知点C是线段AB上一点,点D是线段AB的中点,若AB=10cm,BC=3cm.
(1)求线段CD的长;
(2)若点E是直线AB上一点,且BE=2cm,点F是BE的中点,求线段DF的长.
23.(8分)(2022秋•赣榆区校级月考)如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)
(1)画直线AB;
(2)画射线AC;
(3)连接BC并延长BC到E,使得CE=AB+BC;
(4)在线段BD上取点P,使PA+PC的值最小.
24.(8分)(2022秋•惠山区校级期末)解答题:
(1)如图,若∠AOB=120°,∠AOC=40°,OD、OE分别平分∠AOB、∠AOC,求∠DOE的度数;
(2)若∠AOB,∠AOC是平面内两个角,∠AOB=m°,∠AOC=n°(n<m<180°),OD、OE分别平分∠AOB、∠AOC,求∠DOE的度数.(用含m、n的代数式表示):
25.(8分)(2022秋•南通期末)定义:从∠MPN的顶点P引一条射线PQ(不与PM重合),若∠QPN+∠MPN=180°,则称射线PQ为∠MPN关于边PN的补线.
(1)下列说法:①一个角关于某边的补线一定在这个角的外部;②一个角关于某边的补线一定有2条;③一个角关于某边的补线有1条或2条,其中正确的是 ;(填序号)
(2)如图,O是直线AB上一点,射线OC,OD在AB同侧,OD是∠BOC的平分线,则OC是∠AOD关于边OD的补线吗?为什么?
(3)已知射线OC为∠AOB关于边OB的补线,OP是∠BOC的平分线.若∠AOB=α,试用含α的式子表示∠AOP(直接写出结果).
26.(8分)(2021秋•东台市期末)对于数轴上的点M,线段AB,给出如下定义:
P为线段AB上任意一点,我们把M、P两点间距离的最小值称为点M关于线段AB的“靠近距离”,记作d1(点M,线段AB);把M、P两点间的距离的最大值称为点M关于线段AB的“远离距离”,记作d2(点M,线段AB).
特别的,若点M与点P重合,则M,P两点间的距离为0.
已知点A表示的数为﹣5,点B表示的数为2.
如图,若点C表示的数为3,则d1(点C,线段AB)=1,d2(点C,线段AB)=8.
(1)若点D表示的数为﹣7,则
d1(点D,线段AB)= ,d2(点D,线段AB)= ;
(2)若点M表示的数为m,d1(点M,线段AB)=3,则m的值为 ;若点N表示的数为n,d2(点N,线段AB)=12,则n的值为 .
(3)若点E表示的数为x,点F表示的数为x+2,d2(点F,线段AB)是d1(点E,线段AB)的3倍.求x的值.
27.(8分)(2022秋•海门市期末)已知∠AOB=120°,∠COD在∠AOB内部,∠COD=60°.
(1)如图1,若∠BOD=30°,求∠AOC的度数;
(2)如图2,若OE平分∠BOC,请说明:∠AOC=2∠DOE;
(3)如图3,若在∠AOB的外部分别作∠AOC,∠BOD的余角∠AOP,∠BOQ,试探究∠AOP,∠BOQ,∠COD三者之间的数量关系,并说明理由.
28.(8分)(2018秋•盱眙县期末)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后OM恰好平分∠BOC,则t= (直接写结果)
(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多少秒后OC平分∠MON?请说明理由;
(3)在(2)问的基础上,那么经过多少秒∠MOC=36°?请说明理由.
2023-2024学年苏科版数学七年级上册章节真题汇编检测卷(提优)
第6章 平面图形的认识(一)
考试时间:120分钟 试卷满分:100分 难度系数:0.56
一.选择题(共10小题,满分20分,每小题2分)
1.(2分)(2022秋•海门市期末)如图,将一副三角板的直角顶点重合放置于A处(两块三角板可以在同一平面内自由转动),则下列结论一定成立的是( )
A.∠BAD≠∠EACB.∠DAC﹣∠BAE=45°
C.∠DAC+∠BAE=180°D.∠DAC﹣∠BAE=90°
解:∵是直角三角板,
∴∠BAC=∠DAE=90°,
∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,
即∠BAD=∠EAC,①不成立;
∠DAC﹣∠BAE的值不固定,②不成立;
∵是直角三角板,
∴∠BAC=∠DAE=90°,
∴∠BAD+∠BAE+∠BAE+∠EAC=180°,
即∠BAE+∠DAC=180°,③成立;
∠DAC与∠BAE的大小不确定,④不成立;
故选:C.
2.(2分)(2022秋•惠山区校级期末)下列说法错误的是( )
A.对顶角相等
B.两点之间所有连线中,线段最短
C.等角的补角相等
D.过任意一点P,只能画一条直线
解:A、对顶角相等,此选项正确,不符合题意;
B、两点之间所有连线中,线段最短,此选项正确,不符合题意;
C、等角的补角相等,此选项正确,不符合题意;
D、过任意一点P,能画无数条直线,此选项错误,符合题意;
故选:D.
3.(2分)(2022秋•连云港期末)如图,点C、D分别为线段AB(端点A、B除外)上的两个不同的动点,点D在点C的右侧,图中所有线段的和等于60cm,且AB=3CD,则CD的长度是( )
A.6cmB.8cmC.10cmD.12cm
解:∵图中所有线段的和等于60cm,
∴AC+AD+AB+CD+CB+DB=60cm,
∴AB+AB+AB+CD=60cm.
∵AB=3CD,
∴10CD=60cm,
解得:CD=6cm.
故选:A.
4.(2分)(2022秋•海安市期末)将一副三角尺按不同位置摆放.下列摆放方式中α与β互补的是( )
A.B.
C.D.
解:A、∠α+∠β=90°,
故此选项不符合题意;
B、∠α+∠β<180°,
故此选项不符合题意;
C、如图:
∵∠α=∠1=45°,∠1+∠β=180°,
∴∠α+∠β=180°,
故此选项符合题意;
D、如图:
∵∠D=45°,∠2=∠1=60°,
∴∠β=45°+60°=105°,
∵∠α=60°,
∴∠α+∠β=165°,
故此选项不符合题意,
故选:C.
5.(2分)(2022秋•常州期末)已知线段AB=15cm,C是线段AB上的一点.若在射线AB上取一点D,使得C是AD的中点,且,则线段AC的长度是( )
A.5cmB.3,5cmC.9cmD.5,9cm
解:当D在B的右侧,如图(1),
设DB=xcm,
∵BD=BC,
∴BC=2xcm,
∴CD=CB+BD=3xcm,
∵C是AD的中点,
∴AC=CD=3xcm,
∴AB=AC+CB=5x=15,
∴x=3,
∴AC=3x=9(cm);
当D在B的左侧,如图(2),
∵BD=BC,
∴CD=BD,
∵C是AD中点,
∴AC=CD,
∴AB=3AC=15cm,
∴AC=5(cm),
∴AC的长是9cm或5cm.
故选:D.
6.(2分)(2022秋•鼓楼区期末)如图,∠BOC在∠AOD的内部,且∠BOC=x°,∠AOD=y°,则图中所有角的度数之和为(注:图中所有角均指小于180°的角)( )
A.x+3yB.2x+2yC.3x+yD.3y﹣x
解:∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠COD
=(∠AOB+∠BOD)+(∠AOC+∠COD)+∠AOD+∠BOC
=∠AOD+∠AOD+∠AOD+∠BOC
=3∠AOD+∠BOC
=3y+x,
故选:A.
7.(2分)(2022秋•姑苏区校级期末)下列说法正确的是( )
A.若AC=BC,则点C为线段AB中点
B.把弯曲的公路改直,就能缩短路程,数学原理是“两点确定一条直线”
C.已知A,B,C三点在一条直线上,若AB=2,BC=4,则AC=6
D.已知C,D为线段AB上两点,若AC=BD,则AD=BC
解:A:漏掉A、B、C三点在同一直线上,
∴不符合题意;
B:原理应该是:“两点之间线段最短”,
∴不符合题意;
C:分两种情况①图
AC=6,
②图
AC=2,
∴不符合题意;
D:①图
②图
这两种情况都能满足AC=BD,则AD=BC,
∴符合题意;
故选:D.
8.(2分)(2021秋•秦淮区期末)如图,点A、B、C在同一直线上,H为AC的中点,M为AB的中点,N为BC的中点,则下列说法:①MN=HC;②MH=(AH﹣HB);③MN=(AC+HB);④HN=(HC+HB),其中正确的是( )
A.①②B.①②④C.②③④D.①②③④
解:∵H为AC的中点,M为AB的中点,N为BC的中点,
∴AH=CH=AC,AM=BM=AB,BN=CN=BC,
∴MN=MB+BN=(AB+BC)=AC,
∴MN=HC,①正确;
(AH﹣HB)=(AB﹣BH﹣BH)=MB﹣HB=MH,②正确;
MN=AC,③错误;
(HC+HB)=(BC+HB+HB)=BN+HB=HN,④正确,
故选:B.
9.(2分)(2022秋•姑苏区校级期末)将一张正方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为B′、D′,若∠B′AD′=16°,则∠EAF的度数为( )
A.40°B.45°C.56°D.37°
解:设∠EAD′=α,∠FAB′=β,
根据折叠可知:
∠DAF=∠D′AF,∠BAE=∠B′AE,
∵∠B′AD′=16°,
∴∠DAF=16°+β,
∠BAE=16°+α,
∵四边形ABCD是正方形,
∴∠DAB=90°,
∴16°+β+β+16°+16°+α+α=90°,
∴α+β=21°,
∴∠EAF=∠B′AD′+∠D′AE+∠FAB′
=16°+α+β
=16°+21°
=37°.
则∠EAF的度数为37°.
故选:D.
10.(2分)(2019秋•扬州期末)下列生活实例中,数学原理解释错误的一项是( )
A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线
B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短
C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线
D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短
解:A、从一条河向一个村庄引一条最短的水渠,其中数学原理是:垂线段最短,故原命题错误;
B、两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短,正确;
C、一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,正确;
D、从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短,正确.
故选:A.
二.填空题(共10小题,满分20分,每小题2分)
11.(2分)(2022秋•惠山区校级期末)钟面角是指时钟的时针和分针所成的角.例如:六点钟的时候,时针与分针所成钟面角为180°;七点钟的时候,时针与分针所成钟面角为150°.那么从六点钟到七点钟这一个小时内,哪些时刻时针与分针所成钟面角为100°?请写出具体时刻: 6点分或6点分 .(结果形如6点分)
解:设6点m分时,时针与分针所成钟面角为100°,时针每分钟转,分针每分钟转6°,六点钟的时候,时针与分针所成钟面角为180°,
依题意得:分时针与分针重合前,0.5m+180﹣6m=100,
解得:,
分时针与分针重合后,6m﹣(0.5m+180)=100,
解得:,
故答案为:6点分或6点分.
12.(2分)(2022秋•秦淮区期末)如图,C为线段AB上一点,点E、F分别是线段AC、CB的中点,AB=8,则线段EF的长为 4 .
解:∵点E、F分别为AC、BC的中点,
∴,,
∵AB=8,
∴,
故答案为:4.
13.(2分)(2017秋•滨海县期末)如图,在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB这一步骤的画图依据,甲同学认为是两点确定一条直线,乙同学认为是两点之间线段最短.你认为 甲 同学的说法是正确的.
解:在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB这一步骤的画图依据,应该是两点确定一条直线,而不是两点之间线段最短.
故答案为:甲.
14.(2分)(2020秋•邗江区校级月考)3:30时钟表上的时针与分针的夹角是 75 度.
解:下午3:30时时针与分针相距2+=份,
每份之间相距30°,
下午3:30时,钟表上的时针与分针间的夹角是30°×=75°.
故答案为:75.
15.(2分)(2022秋•高新区期末)如图,有公共端点P的两条线段MP,NP组成一条折线M﹣P﹣N,若该折线M﹣P﹣N上一点Q把这条折线分成相等的两部分,我们把这个点Q叫做这条折线的“折中点”,已知D是折线A﹣C﹣B的“折中点”,E为线AC的中点,CD=1,CE=3,则线段BC的长为 8或4 .
解:如图(1),
∵E为线AC的中点,CE=3,
∴AC=2CE=6,
∵D是折线A﹣C﹣B的“折中点”,
∴BD=AC+CD=6+1=7,
∴BC=BD+CD=7+1=8;
∴如图(2)
∵E为线AC的中点,CE=3,
∴AC=2CE=6,
∴AD=AC﹣CD=6﹣1=5,
∵D是折线A﹣C﹣B的“折中点”,
∴BC+CD=AD=5,
∴BC=5﹣CD=5﹣1=4.
∴BC的长是8或4.
故答案为:8或4.
16.(2分)(2022秋•兴化市校级期末)若一个角的补角等于它的余角4倍,则这个角的度数是 60 度.
解:设这个角为x度,则:180﹣x=4(90﹣x).
解得:x=60.
故这个角的度数为60度.
17.(2分)(2022秋•句容市校级期末)如图,在∠AOB内部作OC⊥OB,OD平分∠AOB,若∠AOB=130°,则∠COD= 25° .
解:∵∠AOB=130°,OD平分∠AOB,
∴∠BOD=∠AOB=65°,
∵OC⊥OB,
∴∠BOC=90°,
∴∠COD=90°﹣∠BOD=25°,
故答案为:25°.
18.(2分)(2022秋•秦淮区期末)如图,A、B是河l两侧的两个村庄,现要在河l上修建一个抽水站,使它到A、B两村庄的距离之和最小.数学老师说:连接AB,则线段AB与l的交点C即为抽水站的位置.其理由是: 两点之间线段最短. .
解:连接AB,则线段AB与l的交点C即为抽水站的位置.其理由是:两点之间线段最短.
故答案为:两点之间线段最短.
19.(2分)(2021秋•鼓楼区校级期末)如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC= 105°或75° 时,AB所在直线与CD所在直线互相垂直.
解:当AB⊥直线CD时,AB,BO分别交DC的延长线于M,N点,如图,
∴∠BMN=90°,
∵∠B=45°,
∴∠CNO=∠BNM=45°,
∵∠DCO=60°,∠DCO=∠CNO+∠BOC,
∴∠BOC=60°﹣45°=15°,
∵∠AOB=90°,
∴∠AOC=∠AOB+∠BOC=90°+15°=105°;
当AB⊥CD时,AB,AO分别交CD于点E,F,
∴∠AEC=90°,
∵∠A=45°,
∴∠CFO=∠AFE=90°﹣45°=45°,
∵∠CFO=∠AOD+∠D,∠D=30°,
∴∠AOD=45°﹣30°=15°,
∵∠COD=90°,
∴∠AOC=∠COD﹣∠AOD=90°﹣15°=75°.
综上,∠AOC的度数为105°或75°.
20.(2分)(2021秋•秦淮区期末)一副三角板AOB与COD如图1摆放,且∠A=∠C=90°,∠AOB=60°,∠COD=45°,ON平分∠COB,OM平分∠AOD.当三角板COD绕O点顺时针旋转(从图1到图2).设图1、图2中的∠NOM的度数分别为α,β,α+β= 105 度.
解:如图1,∵ON平分∠COB,OM平分∠AOD.
∴∠NOB=∠CON=∠BOC=(45°+∠BOD),
∠MOD=∠MOA=∠AOD=(60°+∠BOD),
∴∠MON=α=∠NOB+∠MOD﹣∠BOD=(45°+60°),
如图2,∵ON平分∠COB,OM平分∠AOD.
∴∠NOB=∠CON=∠BOC=(45°﹣∠BOD),
∠MOD=∠MOA=∠AOD=(60°﹣∠BOD),
∴∠MON=β=∠NOB+∠MOD+∠BOD=(45°+60°),
∴α+β=45°+60°=105°,
故答案为:105.
三.解答题(共8小题,满分60分)
21.(6分)(2022秋•姑苏区校级期末)如图,直线AB,CD相交于点O,OM⊥AB.
(1)若∠1=40°,∠2=30°,求∠NOD的度数;
(2)如果ON与CD互相垂直,那么∠1=∠2吗?请说明理由.
解:(1)∵OM⊥AB,
∴∠AOM=90°,
∵∠1=40°,
∴∠AOC=∠AOM﹣∠1=90°﹣40°=50°,
∴∠NOD=180°﹣∠AOC﹣∠2=180°﹣50°﹣30°=100°;
(2)∠1=∠2,理由如下:
如果ON与CD互相垂直,
则∠CON=90°,
∴∠COA+∠2=90°,
∵OM⊥AB,
∴∠AOM=90°,
∴∠COA+∠1=90°,
∴∠1=∠2.
22.(6分)(2022秋•惠山区校级期末)如图,已知点C是线段AB上一点,点D是线段AB的中点,若AB=10cm,BC=3cm.
(1)求线段CD的长;
(2)若点E是直线AB上一点,且BE=2cm,点F是BE的中点,求线段DF的长.
解:(1)∵点D是线段AB的中点,AB=10cm,
∴,
∵BC=3cm,
∴CD=BD﹣BC=2cm;
(2)当点E在AB的延长线上时,如图,
∵BE=2cm,点F是BE的中点,
∴,
∴DF=BD+BF=5+1=6cm;
当点E在线段AB上时,如图,
∵BE=2cm,点F是BE的中点,
∴,
∴DF=BD﹣BF=5﹣1=4cm;
综上所述,线段DF的长为6cm或4cm.
23.(8分)(2022秋•赣榆区校级月考)如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)
(1)画直线AB;
(2)画射线AC;
(3)连接BC并延长BC到E,使得CE=AB+BC;
(4)在线段BD上取点P,使PA+PC的值最小.
解:如图所画:
(1)
(2)
(3)
(4).
24.(8分)(2022秋•惠山区校级期末)解答题:
(1)如图,若∠AOB=120°,∠AOC=40°,OD、OE分别平分∠AOB、∠AOC,求∠DOE的度数;
(2)若∠AOB,∠AOC是平面内两个角,∠AOB=m°,∠AOC=n°(n<m<180°),OD、OE分别平分∠AOB、∠AOC,求∠DOE的度数.(用含m、n的代数式表示):
(1)∵∠AOB=120°,OD平分∠AOB,
∴
∵OE分别平分∠AOC,∠AOC=40°.
∴
∴∠DOE=∠AOD﹣∠AOE
=60°﹣20°
=40°.
(2)若射线OC在∠AOB的内部,如图2
∵∠AOB=m°,∠AOC=n°,OD、OE分别平分∠AOB、∠AOC.
∴∠DOE=∠AOD﹣∠AOE
=
=(m﹣n)°.
所以当射线OC在∠AOB的内部时,∠DOE=(n﹣m)°.
若射线OC在∠AOB外部时,如图3
∵∠AOB=m°,∠AOC=n°,OD、OE分别平分∠AOB、∠AOC.
∴∠DOE=∠AOD+∠AOE
=
=(n+m)°.
所以当射线OC在∠AOB的外部时,∠DOE=(n+m)°.
25.(8分)(2022秋•南通期末)定义:从∠MPN的顶点P引一条射线PQ(不与PM重合),若∠QPN+∠MPN=180°,则称射线PQ为∠MPN关于边PN的补线.
(1)下列说法:①一个角关于某边的补线一定在这个角的外部;②一个角关于某边的补线一定有2条;③一个角关于某边的补线有1条或2条,其中正确的是 ③ ;(填序号)
(2)如图,O是直线AB上一点,射线OC,OD在AB同侧,OD是∠BOC的平分线,则OC是∠AOD关于边OD的补线吗?为什么?
(3)已知射线OC为∠AOB关于边OB的补线,OP是∠BOC的平分线.若∠AOB=α,试用含α的式子表示∠AOP(直接写出结果).
解:(1)①当这个角是钝角时,它的补线一条在内部,邻补的在外部.
②当这个角是直角时,它的补线只有1条;
③当这个角是直角时,它的补线只有1条,当这个角不是直角时,有两条;
故答案为:③;
(2)OC是∠AOD关于边OD的补线;
理由:∵OD是∠BOC的平分线,
∴∠BOD=∠COD,
∵∠BOD+∠AOD=180°,
∴∠COD+∠AOD=180°,
又∵OC不与OA重合,
∴OC是∠AOD关于边OD的补线.
(3)∠AOP=α﹣90°或∠AOP=α+90°或90°﹣α.
理由:
①如图,当∠AOB为钝角,且OC在∠AOB内部时,
∵射线OC为∠AOB关于边OB的补线,
∴∠AOB+∠BOC=180°,
∵∠AOB=α,
∴∠BOC=180°﹣α,
∵OP是∠BOC的平分线.
∴∠BOP=∠BOC=90°﹣α,
∴∠AOP=∠AOB﹣∠BOP=α﹣(90°﹣α)=α﹣90°.
②如图,当∠AOB为钝角,且OC在∠AOB外部时,∵射线OC为∠AOB关于边OB的补线,
∴∠AOB+∠BOC=180°,
∵∠AOB=α,
∴∠BOC=180°﹣α,
∵OP是∠BOC的平分线.
∴∠BOP=∠BOC=90°﹣α,
∴∠AOP=∠AOC﹣∠BOP=180﹣(90°﹣α)=α+90°.
③如图,当∠AOB为锐角,且OC在∠AOB下方时,∵射线OC为∠AOB关于边OB的补线,
∴∠AOB+∠BOC=180°,
∴∠BOC=180﹣α,
∵OP平分∠BOC,
∴∠BOP=∠BOC=90°﹣α,
∴∠AOP=∠BOP﹣∠AOB=90°﹣α﹣α=90°﹣α.
26.(8分)(2021秋•东台市期末)对于数轴上的点M,线段AB,给出如下定义:
P为线段AB上任意一点,我们把M、P两点间距离的最小值称为点M关于线段AB的“靠近距离”,记作d1(点M,线段AB);把M、P两点间的距离的最大值称为点M关于线段AB的“远离距离”,记作d2(点M,线段AB).
特别的,若点M与点P重合,则M,P两点间的距离为0.
已知点A表示的数为﹣5,点B表示的数为2.
如图,若点C表示的数为3,则d1(点C,线段AB)=1,d2(点C,线段AB)=8.
(1)若点D表示的数为﹣7,则
d1(点D,线段AB)= 2 ,d2(点D,线段AB)= 9 ;
(2)若点M表示的数为m,d1(点M,线段AB)=3,则m的值为 ﹣8或5 ;若点N表示的数为n,d2(点N,线段AB)=12,则n的值为 ﹣10或7 .
(3)若点E表示的数为x,点F表示的数为x+2,d2(点F,线段AB)是d1(点E,线段AB)的3倍.求x的值.
解:(1)∵点D表示的数为﹣7,
∴d1(点D,线段AB)=DA=﹣5﹣(﹣7)=2,
d2(点D,线段AB)=DB=2﹣(﹣7)=9,
故答案为:2,9.
(2)①当点M在点A的左侧:
有AM=3,
∴m=﹣8;
当点M在点B的右侧:
有BM=3,
∴m=5,
∴m的值为﹣8或5.
②当点N在点A的左侧:
有BN=12,
∴n=﹣10;
当点N在点B的右侧:
有AN=12,
∴n=7,
∴n的值为﹣10或7.
(3)分三种情况:
当点E在点A的左侧,
d2(点F,线段AB)=BF=2﹣(x+2)=﹣x,
d1(点E,线段AB)=AE=﹣5﹣x,
∵d2(点F,线段AB)是d1(点E,线段AB)的3倍,
∴﹣x=3(﹣5﹣x),
∴x=﹣7.5,
当点E在线段AB上时,d1(点E,线段AB)=0,不合题意舍去,
当点E在点B的右侧,
d2(点F,线段AB)=AF=x+2﹣(﹣5)=x+7,
d1(点E,线段AB)=EB=x﹣2,
∵d2(点F,线段AB)是d1(点E,线段AB)的3倍,
∴x+7=3(x﹣2),
∴x=6.5,
综上所述:x的值为:﹣7.5或6.5.
27.(8分)(2022秋•海门市期末)已知∠AOB=120°,∠COD在∠AOB内部,∠COD=60°.
(1)如图1,若∠BOD=30°,求∠AOC的度数;
(2)如图2,若OE平分∠BOC,请说明:∠AOC=2∠DOE;
(3)如图3,若在∠AOB的外部分别作∠AOC,∠BOD的余角∠AOP,∠BOQ,试探究∠AOP,∠BOQ,∠COD三者之间的数量关系,并说明理由.
解(1)∵∠AOB=120°,∠COD=60°,
∴∠AOC+∠BOD=∠AOB﹣∠COD=120°﹣60°=60°,
∵∠BOD=30°,
∴∠AOC=60°﹣30°=30°;
(2)∵OE平分∠BOC,
∴∠COE=∠BOC,
∵∠EOD=∠COD﹣∠COE,∠COD=60°,
∴∠EOD=60°﹣∠BOC,
∵∠AOC=∠AOB﹣∠BOC,∠AOB=120°,
∴∠AOC=120°﹣∠BOC,
∴∠AOC=2∠EOD;
(3)∵∠AOP+∠AOC=90°,
∴∠AOP=90°﹣∠AOC,
∵∠BOQ+∠BOD=90°,
∴∠BOQ=90°﹣∠BOD,
∴∠AOP+∠BOQ=180°﹣(∠AOC+∠BOD)=180°﹣(∠AOB﹣∠COD),
∵∠AOB=120°,∠COD=60°,
∴∠AOP+∠BOQ=180°﹣(120°﹣60°)=120°=2×60°,
∴∠AOP+∠BOQ=2∠COD.
28.(8分)(2018秋•盱眙县期末)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后OM恰好平分∠BOC,则t= 5秒 (直接写结果)
(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多少秒后OC平分∠MON?请说明理由;
(3)在(2)问的基础上,那么经过多少秒∠MOC=36°?请说明理由.
解:(1)∵∠AON+∠BOM=90°,∠COM=∠MOB,
∵∠AOC=30°,
∴∠BOC=2∠COM=150°,
∴∠COM=75°,
∴∠CON=15°,
∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,
解得:t=15°÷3°=5秒;
(2)5秒或115秒时,OC平分角MON,理由如下:
当OC运动时,
∵∠AON+∠BOM=90°,∠CON=∠COM,
∵∠MON=90°,
∴∠CON=∠COM=45°,
∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,
设∠AON为3t,∠AOC为30°+6t,
∵∠AOC﹣∠AON=45°,
可得:6t﹣3t=15°,
解得:t=5秒;
OC停止运动,OM运动345°时,此时,OC也平分∠MON,
t=345÷3=115(秒);
(3)当OC运动时,
如图:OC平分∠MOB
OC可能在∠MOB内侧也可能在外侧,由题意得:
6t﹣3t=54°﹣30°=24°或6t﹣3t=126°﹣30°=96°,
解得:t=8或32秒;
当OC停止运动时,
MO运动到AO下方36°时,∠MON=36°,
t=(270﹣6)÷3=88(秒),
MO运动到AO下方36°时,∠MOC=36°,
t=(270+30+36)÷3=112(秒)
答:经过8或32秒或112秒或88秒
题号
一
二
三
总分
得分
评卷人
得 分
评卷人
得 分
评卷人
得 分
相关试卷
这是一份苏科版数学七年级上册全程通关培优(专项卷+章节复习+期中期末备考)第6章平面图形的认识(一)(拔高卷)特训(学生版+解析),共29页。试卷主要包含了50,8 °.,5°或88°等内容,欢迎下载使用。
这是一份苏科版数学七年级上册全程通关培优(专项卷+章节复习+期中期末备考)第5章走进图形世界(提优卷)特训(学生版+解析),共26页。试卷主要包含了63等内容,欢迎下载使用。
这是一份苏科版数学七年级上册全程通关培优(专项卷+章节复习+期中期末备考)第4章一元一次方程(提优卷)特训(学生版+解析),共36页。