2025届贵州省兴仁市真武山街道办事处黔龙学校九年级数学第一学期开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)将函数y=2x的图象沿y轴向下平移3个单位长度后,所得函数解析式为( )
A.y=2x+3B.y=2x-3C.y=2(x+3)D.y=2(x-3)
2、(4分)设,,且,则的值是( )
A.B.C.D.
3、(4分)欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是( )
A.的长B.的长C.的长D.的长
4、(4分)直线过点,,则的值是( )
A.B.C.D.
5、(4分)某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是( )
A.15,15B.17.5,15C.20,20D.15,20
6、(4分)下列二次根式中,属于最简二次根式的是( )
A.B.C.D.
7、(4分)计算的的结果是( )
A.B.C.4D.16
8、(4分)一元二次方程4x2+1=3x的根的情况是( )
A.没有实数根 B.只有一个实数根 C.有两个相等的实数根 D.有两个不相等的实数根
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形中,,连接,以对角线为边按逆时针方向作矩形,使矩形矩形;再连接,以对角线为边,按逆时针方向作矩形,使矩形矩形, ..按照此规律作下去,若矩形的面积记作,矩形的面积记作,矩形的面积记作, ... 则的值为__________.
10、(4分)如图,将一张矩形纸片ABCD沿EF折叠,使点D与点B重合,点C落在C'的位置上,若∠BFE=67°,则∠ABE的度数为_____.
11、(4分)直角三角形的一条直角边长是另一条直角边长的2倍,斜边长是10,则较短的直角边的长为___________.
12、(4分)如图.将平面内Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC.若AC=2,BC=1,则线段BE的长为__________.
13、(4分)在中,,,,则__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在四边形ABCD中,AB=BC=3,CD=,DA=5,∠B=90°,求∠BCD的度数
15、(8分)已知x=﹣1,y=+1,求x2+xy+y2的值.
16、(8分)如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA>OB).
(1)求点D的坐标.
(2)求直线BC的解析式.
(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.
17、(10分)已知关于的方程有两个实数根.
(1)求实数的取值范围;
(2)若为正整数,方程的根为.求:的值.
18、(10分)如图,在的网格中,网格线的公共点称为格点.已知格点、,如图所示线段上存在另外一个格点.
(1)建立平面直角坐标系,并标注轴、轴、原点;
(2)直接写出线段经过的另外一个格点的坐标:_____;
(3)用无刻度的直尺画图,运用所学的三角形全等的知识画出经过格点的射线,使(保留画图痕迹),并直接写出点的坐标:_____.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E、F分别为AC和AB的中点,则EF=____________.
20、(4分)已知点M(m,3)在直线上,则m=______.
21、(4分)已知点A(m,n),B(5,3)关于x轴对称,则m + n =______.
22、(4分)如图,已知正方形的边长为,则图中阴影部分的面积为__________.
23、(4分)一元二次方程的解是__.
二、解答题(本大题共3个小题,共30分)
24、(8分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择,为了估计全校学生对这四个活动项日的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:
(1)求参加这次调查的学生人数,并补全条形统计图;
(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;
(3)若该校共有1600名学生,试估计该校选择“足球”项目的学生有多少人?
25、(10分)解不等式组 ,并写出x的所有整数解.
26、(12分)如图,在四边形ABCD中,∠D=90°,AB=13,BC=12,CD=4,AD=3.
求:(1)AC的长度;
(2)判断△ACB是什么三角形?并说明理由?
(3)四边形ABCD的面积。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据“上加下减”的原则进行解答即可.
【详解】
把函数y=2x的图象向下平移1个单位后,所得图象的函数关系式为y=2x-1.
故选B.
本题考查的是一次函数的图象与几何变换,熟知函数图象平移时“上加下减,左加右减”的法则是解答此题的关键.
2、C
【解析】
将 变形后可分解为:(−5)(+3)=0,从而根据a>0,b>0可得出a和b的关系,代入即可得出答案.
【详解】
由题意得:a+=3+15b,
∴(−5)(+3)=0,
故可得:=5,a=25b,
∴=.
故选C.
本题考查二次根式的化简求值,有一定难度,根据题意得出a和b的关系是关键.
3、B
【解析】
【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.
【解答】用求根公式求得:
∵
∴
∴
AD的长就是方程的正根.
故选B.
【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.
4、B
【解析】
分别将点,代入即可计算解答.
【详解】
解:分别将点,代入,
得:,解得,
故答案为:B.
本题考查了待定系数法求正比例函数解析式,将点的坐标代入解析式解方程是解题的关键.
5、B
【解析】
根据中位数和众数的概念进行判断.
【详解】
共有数据12个,第6个数和第7个数分别是1,20,所以中位数是:(1+20)÷2=17.5;捐款金额的众数是1.
故选B.
本题考查中位数和众数,将数据从小到大或从大到小排列后,最中间的一个数或两个数的平均数称为中位数,出现次数最多的是众数.
6、C
【解析】
根据最简二次根式的定义对各选项分析判断利用排除法求解.
【详解】
解:A、不是最简二次根式,错误;
B、不是最简二次根式,错误;
C、是最简二次根式,正确;
D、不是最简二次根式,错误;
故选:C.
本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
7、C
【解析】
根据算术平方根和平方根进行计算即可
【详解】
=4
故选:C
此题考查算术平方根和平方根,掌握运算法则是解题关键
8、A
【解析】
先求出△的值,再判断出其符号即可.
【详解】
解:原方程可化为:4x2﹣3x+1=0,
∵△=32﹣4×4×1=-7<0,
∴方程没有实数根.
故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
首先根据矩形的性质,求出AC,根据边长比求出面积比,依次类推,得出规律,即可得解.
【详解】
∵四边形ABCD是矩形,
∴AD⊥DC,
∴AC=,
∵按逆时针方向作矩形ABCD的相似矩形AB1C1C,
∴矩形AB1C1C的边长和矩形ABCD的边长的比为:2
∴矩形AB1C1C的面积和矩形ABCD的面积的比5:4,
∵矩形ABCD的面积=2×1=2,
∴矩形AB1C1C的面积=,
依此类推,矩形AB2C2C1的面积和矩形AB1C1C的面积的比5:4
∴矩形AB2C2C1的面积=
∴矩形AB3C3C2的面积=,
按此规律第n个矩形的面积为:
则
故答案为:.
本题考查了矩形的性质,勾股定理,相似多边形的性质,解此题的关键是能根据求出的结果得出规律.
10、44°
【解析】
利用平行线的性质以及三角形的内角和定理即可解决问题.
【详解】
∵AD∥BC,
∴∠DEF=∠BFE=67°;
又∵∠BEF=∠DEF=67°,
∴∠AEB=180°﹣∠BEF﹣∠DEF=180°﹣67°﹣67°=46°,
∵∠A=90°,
∴∠ABE=90°﹣46°=44°,
故答案为44°.
本题考查平行线的性质,解题的关键是熟练掌握作为基本知识.
11、1
【解析】
根据边之间的关系,运用勾股定理,列方程解答即可.
【详解】
由题意可设两条直角边长分别为x,2x,
由勾股定理得x2+(2x)2=(1)2,
解得x1=1,x2=-1舍去),
所以较短的直角边长为1.
故答案为:1
本题考查了一元二次方程和勾股定理的应用,解题的关键是根据勾股定理得到方程,转化为方程问题.
12、1
【解析】
试题解析:∵Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC,
∴CE=CA=2,∠ECF=∠ACB=90°,
∴点E、C、B共线,
∴BE=EC+BC=2+1=1.
13、1
【解析】
根据直角三角形中,30°所对的直角边是斜边的一半进行计算.
【详解】
∵在Rt△ABC中,∠C=90°,∠A=30°,BC=1,
∴AB=1BC=1.
故答案为:1.
此题考查直角三角形的性质,解题关键在于掌握30°所对的直角边是斜边的一半.
三、解答题(本大题共5个小题,共48分)
14、135°.
【解析】
由于∠B=90°,AB=BC=3,利用勾股定理可求AC,并可求∠BCA=45°,而CD=,AD=5,易得AC2+AD2=CD2,可证△ACD是直角三角形,于是有∠ACD=90°,从而易求∠BCD.
【详解】
解:∵∠B=90°,AB=BC=3,
∴AC===3 ,,∠BAC=∠BCA=45°,
又∵CD=,DA=5,
∴AC2+CD2=18+7=25,AD2=25,
∴AC2+CD2=AD2,
∴△ACD是直角三角形,
∴∠ACD=90°,
∴∠BCD=∠BCA+∠DCA=45°+90°=135°.
本题考查等腰三角形的性质、勾股定理、勾股定理的逆定理.解题的关键是证明△ACD是直角三角形.
15、1
【解析】
根据x、y的值,可以求得题目中所求式子的值.
【详解】
解:∵x=﹣1,y=+1,
∴x+y=2,xy=2,
∴x2+xy+y2=(x+y)2﹣xy=(2)2﹣2=12﹣2=1.
本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.
16、(1)D(4,7)(2)y=(3)详见解析
【解析】
试题分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;
(2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b(k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;
(3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C的对称点时,△PCD为等腰三角形,然后求解即可.
试题解析:(1)x2﹣7x+12=0,
解得x1=3,x2=4,
∵OA>OB,
∴OA=4,OB=3,
过D作DE⊥y于点E,
∵正方形ABCD,
∴AD=AB,∠DAB=90°,
∠DAE+∠OAB=90°,
∠ABO+∠OAB=90°,
∴∠ABO=∠DAE,
∵DE⊥AE,
∴∠AED=90°=∠AOB,
∵DE⊥AE
∴∠AED=90°=∠AOB,
∴△DAE≌△ABO(AAS),
∴DE=OA=4,AE=OB=3,
∴OE=7,
∴D(4,7);
(2)过点C作CM⊥x轴于点M,
同上可证得△BCM≌△ABO,
∴CM=OB=3,BM=OA=4,
∴OM=7,
∴C(7,3),
设直线BC的解析式为y=kx+b(k≠0,k、b为常数),
代入B(3,0),C(7,3)得,,
解得,
∴y=x﹣;
(3)存在.
点P与点B重合时,P1(3,0),
点P与点B关于点C对称时,P2(11,6).
考点:1、解一元二次方程;2、正方形的性质;3、全等三角形的判定与性质;4、一次函数
17、(1);(2)17
【解析】
(1)根据根判别式可得;(2)因为为正整数,又,所以此时方程为,其中;
【详解】
解:(1)由解的
(2)因为为正整数,又,所以此时方程为,其中
所以
考核知识点:根判别式,根与系数关系.理解相关知识即可.
18、(1)如图所示见解析;(2)(5,4);(3).
【解析】
(1)由可确定原点的位置,进而建立平面直角坐标系;
(2)观察线段即可看出经过格点(5,4);
(3)先把EA绕点E顺时针旋转90度找到格点A的对应格点F,再对比E、B的相对位置找到点F的对应格点D.
【详解】
(1) 如图所示
(2)E(5,4).如下图
(3)如下图
先把EA绕点E顺时针旋转90度找到格点A的对应格点F,再对比E、B的相对位置找到点F的对应格点D,故.此时点D的坐标是(3,5).
本题考查了网格问题及坐标系的有关知识,通过旋转得到垂直是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3;
【解析】
先利用勾股定理求出BC的长,然后再根据中位线定理求出EF即可.
【详解】
∵直角三角形ABC中,∠C=90°,AB=10,AC=8,
∴BC==6,
∵点E、F分别为AB、AC的中点,
∴EF是△ABC的中位线,
∴EF=BC=×6=3,
故答案为3.
本题考查了勾股定理,三角形中位线定理,熟练掌握这两个定理的内容是解本题的关键.
20、2
【解析】
把点M代入即可求解.
【详解】
把点M代入,
即3=2m-1,解得m=2,
故填:2.
此题主要考查一次函数,解题的关键是熟知坐标与函数的关系.
21、1
【解析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m=5,n=-3,代入可得到m + n的值.
【详解】
解:∵点A(m,n),B(5,3)关于x轴对称,
∴m=5,n=-3,
即:m + n =1.
故答案为:1.
此题主要考查了关于x轴对称点的坐标特点,关键是掌握坐标变化规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;(1)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.
22、2
【解析】
正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.
【详解】
解:依题意有S阴影=×4×4=2cm1.
故答案为:2.
本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.
23、x1=1,x2=﹣1.
【解析】
先移项,在两边开方即可得出答案.
【详解】
∵
∴=9,
∴x=±1,
即x1=1,x2=﹣1,
故答案为:x1=1,x2=﹣1.
本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)补图详见解析,50;(2)72°;(3)1
【解析】
(1)由“乒乓球”人数及其百分比可得总人数,根据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;
(2)用“篮球”人数占被调查人数的比例乘以360°即可;
(3)用总人数乘以样本中足球所占百分比即可得.
【详解】
(1)=50,
答:参加这次调查的学生人数为50人,
羽毛球的人数=50-14-10-8=8人
补全条形统计图如图所示:
(2)×360°=72°.
答:扇形统计图中“篮球”项目所对应扇形的圆心角度数为72°.
(3)1600×=1.
答:估计该校选择“足球”项目的学生有1人.
本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
25、;
【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
【详解】
解:解不等式①,得:.解不等式②,得:.则不等式组的解集为.
∴不等式组的整数解为:.
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
26、(1)5(2)直角三角形,理由见解析(3)36
【解析】
在直角三角形ABD中,利用勾股定理求出BD的长,再利用勾股定理的逆定理得到三角形BCD为直角三角形,根据四边形ABCD的面积=直角三角形ABD的面积+直角三角形BCD的面积,即可求出四边形的面积.
【详解】
(1)在Rt△ACD中,CD=4,AD=3
由勾股定理,得CD +AD=AC
∴AC= =5;
(2)△ACD是直角三角形;
理由如下:∵AB=13,BC=12,AC=5
∴BC+AC=12+5=169AB=13=169
∴BC+AC=AB
∴△ACB是Rt△,∠ACB=90°;
(3)S四边形ABCD=S△ABC+S△ACD
=×12×5+×4×3=30+6=36.
此题考查勾股定理的逆定理,勾股定理,解题关键在于求出BD的长
题号
一
二
三
四
五
总分
得分
捐款(元)
10
15
20
50
人数
1
5
4
2
2025届贵州省兴仁县黔龙学校数学九上开学教学质量检测试题【含答案】: 这是一份2025届贵州省兴仁县黔龙学校数学九上开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年贵州省黔西南兴仁市黔龙学校九上数学开学达标检测模拟试题【含答案】: 这是一份2024-2025学年贵州省黔西南兴仁市黔龙学校九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
235,贵州省黔西南布依族苗族自治州兴仁市真武山街道办事处黔龙学校2023-2024学年九年级下学期3月月考数学试题(无答案): 这是一份235,贵州省黔西南布依族苗族自治州兴仁市真武山街道办事处黔龙学校2023-2024学年九年级下学期3月月考数学试题(无答案),共6页。试卷主要包含了填涂答题卡必须使用2B铅笔填涂,方程有实数根,则的取值范围是,若方程有一个根是,则的值是等内容,欢迎下载使用。