2025届海南省农垦中学数学九上开学调研试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列说法正确的是( )
A.两个全等三角形是特殊的位似图形B.两个相似三角形一定是位似图形
C.位似图形的面积比与周长比都和相似比相等D.位似图形不可能存在两个位似中心
2、(4分)不等式组的解集在数轴上表示正确的是( )
A.B.
C.D.
3、(4分)下列说法正确的是( )
A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直
C.一组对边平行的四边形是平行四边形D.对角线相等的菱形是正方形
4、(4分)如图,在平面直角坐标系中,点A是反函数图像上的点,过点A与x轴垂直的直线交x轴于点B,连结AO,若的面积为3,则k的值为( )
A.3B.-3
C.6D.-6
5、(4分)如图,在中,,则的度数为( )
A.B.C.D.
6、(4分)如图,有一块Rt△ABC的纸片,∠ABC=,AB=6,BC=8,将△ABC沿AD折叠,使点B落在AC上的E处,则BD的长为( )
A.3B.4C.5D.6
7、(4分)顺次连接四边形各边的中点,所成的四边形必定是( )
A.等腰梯形B.直角梯形C.矩形D.平行四边形
8、(4分)关于函数y= -x-3的图象,有如下说法:
①图象过点(0,-3);②图象与x轴的交点是(-3,0);③由图象可知y随x的增大而增大; ④图象不经过第一象限;⑤图象是与y= -x+4平行的直线.其中正确的说法有( )
A.5个B.4个C.3个D.2个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,, 分别是的中点,且,延长到点,使,连接,若四边形是菱形,则______
10、(4分)将直线y=3x﹣1向上平移1个单位长度,得到的一次函数解析式为_____.
11、(4分)分解因式:__________.
12、(4分)如图,在平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=_____度.
13、(4分)已知点P(3,﹣1)关于y轴的对称点Q的坐标是_____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,,,,,求的面积.
15、(8分)为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE.(精确到0.1m)
(下列数据提供参考:20°=0.3420,20°=0.9397,20°=0.3640)
16、(8分)(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论;
(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,猜测MN与BM的数量关系,无需证明.
17、(10分)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.
(1)甲车间每小时加工服装件数为 件;这批服装的总件数为 件.
(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;
(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.
18、(10分)(1)读读做做:教材中有这样的问题,观察下面的式子,探索它们的规律,=1-,=,=……用正整数n表示这个规律是______;
(2)问题解决:一容器装有1L水,按照如下要求把水倒出:第一次倒出L水,第二次倒出的水量是L水的,第三次倒出的水量是L水的,第四次倒出的水量是L水的,……,第n+1次倒出的水量是L水的,……,按照这种倒水方式,这1L水能否倒完?
(3)拓展探究:①解方程:+++=;
②化简:++…+.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:=________.
20、(4分)一种运算:规则是x※y=-,根据此规则化简(m+1)※(m-1)的结果为_____.
21、(4分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,线段AC的垂直平分线DE交AC于D交BC于E,则△ABE的周长为_____.
22、(4分)如图,在直角坐标系中,已知点A(-3,-1),点B(-2,1),平移线段AB,使点A落在A1(0,1),点B落在点B1,则点B1的坐标为_______.
23、(4分)甲、乙两名同学的5次数学成绩情况统计结果如下表:
根据上表,甲、乙两人成绩发挥较为稳定的是______填:甲或乙
二、解答题(本大题共3个小题,共30分)
24、(8分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座。
(1)计划到2020年底,全省5G基站的数量是多少万座?;
(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率。
25、(10分)计算:(- )2×( )-2+(-2019)0
26、(12分)如图,在平面直角坐标系xOy中,已知直线AB:y=x+4交x轴于点A,交y轴于点B.直线CD:y=-x-1与直线AB相交于点M,交x轴于点C,交y轴于点D.
(1)直接写出点B和点D的坐标.
(2)若点P是射线MD的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系,并指出x的取值范围.
(3)当S=10时,平面直角坐标系内是否存在点E,使以点B,E,P,M为顶点的四边形是平行四边形?若存在,共有几个这样的点?请求出其中一个点的坐标(写出求解过程);若不存在,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据位似图形的定义与性质对各个选项进行判断即可.
【详解】
A.全等三角形是特殊的相似三角形,其相似比为1,但是两个全等三角形不一定对应顶点的连线相交于一点,对应边互相平行,故本选项错误,
B.两个位似三角形的对应顶点的连线一定相交于一点,对应边一定互相平行,而相似三角形只要求形状相同、大小不等,并没有位置上的特殊要求,故本选项错误,
C.位似图形的面积的比等于相似比的平方,周长的比等于相似比,故本选项错误,
D.两个位似图形不仅是相似图形,而且对应顶点的连线相交于一点,这一点是唯一的, 故本选项正确.
故选D.
本题主要考查位似图形的定义与性质,1.位似图形对应线段的比等于相似比;2.位似图形的对应角都相等;3.位似图形对应点连线的交点是位似中心;4.位似图形面积的比等于相似比的平方;5.位似图形高、周长的比都等于相似比;6.位似图形对应边互相平行或在同一直线上.
2、B
【解析】
先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.
【详解】
∵解不等式得:x<0,解不等式得:x≤3,
∴不等式组的解集为x<0,
在数轴上表示为:,
故选B.
本题考查了解一元一次不等式组,在数轴上表示不等式的解集,解题的关键是先解不等式再画数轴.
3、D
【解析】
利用菱形的判定、平行四边形的判定、正方形的判定及矩形的性质逐一判断即可得答案.
【详解】
A.对角线互相垂直的平行四边形是菱形,故该选项错误,
B.矩形的对角线一定相等,但不一定垂直,故该选项错误,
C.一组对边平行且相等的四边形是平行四边形,故该选项错误,
D.对角线相等的菱形是正方形,正确,
故选D.
此题主要考查了菱形的判定、正方形的判定、平行四边形的判定及矩形的性质等知识,对角线互相垂直的平行四边形是菱形以及四条边相等的四边形是菱形;一组对边平行且相等的四边形是平行四边形;对角线相等的菱形是正方形;熟练掌握相关判定方法及性质是解题关键.
4、D
【解析】
根据三角形ABO的面积为3,得到|k|=6,即可得到结论.
【详解】
解:∵三角形AOB的面积为3,
∴,
∴|k|=6,
∵k<0,
∴k=-6,
故选:D.
本题考查了反比例函数比例系数k的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.
5、C
【解析】
根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.
【详解】
∵平行四边形ABCD,
∴∠A+∠B=180°,∠A=∠C,
∵∠A+∠C=140°,
∴∠A=∠C=70°,
∴∠B=110°,
故选:C.
此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.
6、A
【解析】
【分析】由题意可得∠AED=∠B=90°,AE=AB=6,由勾股定理即可求得AC的长,则可得EC的长,然后设BD=ED=x,则CD=BC-BD=8-x,由勾股定理CD2=EC2+ED2,即可得方程,解方程即可求得答案.
【详解】如图,点E是沿AD折叠,点B的对应点,连接ED,
∴∠AED=∠B=90°,AE=AB=6,
∵在Rt△ABC中,∠B=90°,AB=6,BC=8,
∴AC==10,
∴EC=AC-AE=10-6=4,
设BD=ED=x,则CD=BC-BD=8-x,
在Rt△CDE中,CD2=EC2+ED2,
即:(8-x)2=x2+16,
解得:x=3,
∴BD=3,
故选A.
【点睛】本题考查了折叠的性质与勾股定理,难度适中,注意掌握数形结合思想与方程思想的应用,注意掌握折叠中的对应关系.
7、D
【解析】
根据题意,画出图形,连接AC、BD,根据一组对边平行且相等的四边形是平行四边形进行判定.
【详解】
解:四边形ABCD的各边中点依次为E、F、H、G,
∴EF为△ABD的中位线,GH为△BCD的中位线,
∴EF∥BD,且EF=BD,GH∥BD,且GH=BD,
∴EF∥GH,EF=GH,
∴四边形EFHG是平行四边形.
故选:D.
此题考查平行四边形的判定和三角形中位线定理.解题的关键是正确画出图形,注意利用图形求解.
8、B
【解析】
根据一次函数的性质和图象上点的坐标特征解答.
【详解】
解:①将(0,-3)代入解析式得,左边=-3,右边=-3,故图象过(0,-3)点,正确;
②当y=0时,y=-x-3中,x=-3,故图象过(-3,0),正确;
③因为k=-1<0,所以y随x增大而减小,错误;
④因为k=-1<0,b=-3<0,所以图象过二、三、四象限,正确;
⑤因为y=-x-3与y= -x+4的k值(斜率)相同,故两图象平行,正确.
故选:B.
本题考查一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2或2;
【解析】
根据等面积法,首先计算AC边上的高,再设AD的长度,列方程可得x的值,进而计算AB.
【详解】
根据可得为等腰三角形
分别是的中点,且
四边形是菱形
所以可得 中AC边上的高为:
设AD为x,则CD=
所以
解得x= 或x=
故答案为2或2
本题只要考查菱形的性质,关键在于设合理的未知数求解方程.
10、y=3x.
【解析】
根据“上加、下减”的原则进行解答即可.
【详解】
由“上加、下减”的原则可知,
将函数y=3x﹣1的图象向上平移1个单位所得函数的解析式为y=3x﹣1+1=3x.
故答案为y=3x.
本题考查的是一次函数的图象与几何变换,熟知“上加、下减”的原则是解答此题的关键.
11、
【解析】
提取公因式a进行分解即可.
【详解】
解:a2−5a=a(a−5).
故答案是:a(a−5).
本题考查了因式分解−提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
12、
【解析】
由DB=DC,∠C=70°可以得到∠DBC=∠C=70°,又由AD∥BC推出∠ADB=∠DBC=∠C=70°,而∠AED=90°,根据直角三角形两锐角互余即可求得答案.由此可以求出∠DAE.
【详解】
∵DB=DC,∠C=70°,
∴∠DBC=∠C=70°,
在平行四边形ABCD中,
∵AD∥BC,AE⊥BD,
∴∠ADB=∠DBC=∠C=70°,∠AED=90°,
∴∠DAE=-70°=20°.
故填空为:20°.
本题考查了平行四边形的性质、等腰三角形的性质、直角三角形两锐角互余的性质,熟练掌握相关性质与定理是解题的关键.
13、(-3,-1)
【解析】
根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.
【详解】
解:∵点Q与点P(3,﹣1)关于y轴对称,
∴Q(-3,-1).
故答案为:(-3,-1).
本题主要考查关于对称轴对称的点的坐标特征,解此题的关键在于熟练掌握其知识点.
三、解答题(本大题共5个小题,共48分)
14、42
【解析】
根据勾股逆定理得出∠ADB=90°推出∠ADC=90°,再利用勾股定理求出DC的长度,利用三角形面积公式就可以求出的面积.
【详解】
证明:∵在中,,,,
∴.
∴.
∴.
∵,,
∴.
∴.
本题考查了勾股定理及勾股逆定理和三角形的面积公式,灵活运用勾股定理及勾股逆定理和三角形的面积公式是解题的关键.
15、限高应标3.0.
【解析】
由图得:ÐA=ÐDCE=20º
∵AB=10,在Rt△ABD中,=,
∴BD=10×0.3640=3.64
∴DC=BD-BC=3.64-0.5=3.14
∵在Rt△DEC中,=,
∴CE=3.14×0.9397≈3.0
答:限高应标3.0.
这是一题用利用三角函数解决的实际问题,关键在于构造直角三角形Rt△ABD和Rt△DEC.
16、(1)30º,见解析.(2)
【解析】
(1)猜想:∠MBN=30°.如图1中,连接AN.想办法证明△ABN是等边三角形即可解决问题;
(2)MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.只要证明△MOP≌△BOP,即可解决问题.
【详解】
(1)猜想:∠MBN=30°.
证明:如图1中,连接AN,∵直线EF是AB的垂直平分线,
∴NA=NB,由折叠可知,BN=AB,
∴AB=BN=AN,
∴△ABN是等边三角形,
∴∠ABN=60°,
∴NBM=∠ABM=∠ABN=30°.
(2)结论:MN=BM.
折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,
折痕为MP,连接OP.
理由:由折叠可知△MOP≌△MNP,
∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,
∠MOP=∠MNP=90°,
∴∠BOP=∠MOP=90°,
∵OP=OP,
∴△MOP≌△BOP,
∴MO=BO=BM,
∴MN=BM.
本题考查翻折变换、矩形的性质、剪纸问题等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造全等三角形解决问题.
17、(1)10;2;(2)y=60x﹣120(4≤x≤9);(3)1.
【解析】
试题分析:(1)根据工作效率=工作总量÷工作时间,即可求出甲车间每小时加工服装件数,再根据这批服装的总件数=甲车间加工的件数+乙车间加工的件数,即可求出这批服装的总件数;
(2)根据工作效率=工作总量÷工作时间,即可求出乙车间每小时加工服装件数,根据工作时间=工作总量÷工作效率结合工作结束时间,即可求出乙车间修好设备时间,再根据加工的服装总件数=120+工作效率×工作时间,即可求出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;
(3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于1000,求出x值,此题得解.
试题解析:解:(1)甲车间每小时加工服装件数为720÷9=10(件),这批服装的总件数为720+420=2(件).
故答案为10;2.
(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时),∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).
(3)甲车间加工服装数量y与x之间的函数关系式为y=10x,当10x+60x﹣120=1000时,x=1.
答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为1小时.
点睛:本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.
18、(1);(2)按这种倒水方式,这1L水倒不完,见解析;(3)①x=;②
【解析】
(1)归纳总结得到一般性规律,写出即可;
(2)根据题意列出关系式,利用得出的规律化简即可;
(3)①方程变形后,利用得出的规律化简,计算即可求出解;
②原式利用得出的规律变形,计算即可求出值.
【详解】
(1)根据题意得:=-;
(2)前n次倒出的水总量为+++…+=1-+-+-+…+-=1-=,
∵<1,
∴按这种倒水方式,这1L水倒不完;
(3)①方程整理得:[(1-)+(-)+(-)+(-)]•=,
[(1-)]•=,
•=,
解得:x=,
经检验,x=是原方程的解,
∴原方程的解为x=;
②++…+
=
=(-)+(-)+(-)+…+[-]
=[-]
=.
本题考查规律型:数字的变化类,解分式方程,分式的混合运算,解答本题的关键是根据所给式子找出规律,并利用规律解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、7
【解析】
根据平方差公式展开,再开出即可;
【详解】
=
=
=7.
故答案为7.
本题考查了二次根式的化简,主要考查学生的计算和化简能力,题目比较好,难度适中.
20、
【解析】
根据题目中的运算法则把(m+1)※(m-1)化为,再利用异分母分式的加减运算法则计算即可.
【详解】
∵x※y=-,
∴(m+1)※(m-1)
=
=
=
=
故答案为:.
本题考查了新定义运算,根据题目中的运算法则把(m+1)※(m-1)化为是解本题的关键.
21、1
【解析】
根据勾股定理求出BC,根据线段垂直平分线得出AE=CE,求出△ABE的周长=AB+BC,代入求出即可.
【详解】
解:在△ABC中,∠B=90°,AB=3,AC=5,由勾股定理得:BC=4,
∵线段AC的垂直平分线DE,
∴AE=EC,
∴△ABE的周长为AB+BE+AE=AB+BE+CE=AB+BC=3+4=1,
故答案为1.
本题主要考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是本题的关键.
22、(1,3)
【解析】
先确定点A到点A1的平移方式,然后根据平移方式即可确定点B平移后的点B1的坐标.
【详解】
∵点A(-3,-1)落在A1(0,1)是点A向右移动3个单位,向上移动2个单位.
∴点B(-2,1) 向右移动3个单位,向上移动2个单位后的点坐标B1为(1,3).
故答案为:(1,3).
本题考查坐标与图形变化——平移.能理解A与A1,B与B1分别是平移前后图形上的两组对应点,它们的平移方式相同是解决此题的关键.
23、甲
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
∵S甲2=4,S乙2=16,
∴S甲2=4<S乙2=16,
∴成绩稳定的是甲,
故答案为:甲.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
二、解答题(本大题共3个小题,共30分)
24、(1)到2020年底,全省5G基站的数量是6万座;(2)2020年底到2022年底,全省5G基站数量的年平均增长率为.
【解析】
(1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;
(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
【详解】
解:(1)由题意可得:到2020年底,全省5G基站的数量是(万座).
答:到2020年底,全省5G基站的数量是6万座.
(2)设年平均增长率为,由题意可得:
,
解得:,(不符合,舍去)
答:2020年底到2022年底,全省5G基站数量的年平均增长率为.
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
25、2
【解析】
分别计算乘方,负指数幂,零次幂,然后再按运算顺序进行计算即可.
【详解】
原式= ×4+1
=1+1=2.
考查了实数运算,解题关键是熟记其运算法则.
26、(1)B(0,4),D(0,-1);(2)();(3)存在,共有3个,E点为(4,)、(-6,-4)和
【解析】
(1)利用y轴上的点的坐标特征即可得出结论.
(2)先求出点M的坐标,再用三角形的面积之和即可得出结论.
(3)分三种情况,根据题意只写出其中一个求解过程即可,利用对角线互相平分的四边形是平行四边形和线段的中点坐标的确定方法即可得出结论.
【详解】
(1)将x=0代入y=x+4,y=+4
解得
将y=0代入y=-x-1,y=--1
解得
∴B(0,4),D(0,-1)
(2)在解方程组
得M点的坐标是,
∵BD=5,
当P点在轴左侧时,如图(1):;
当P点在轴右侧时,如图(2):.
总之,所求的函数关系式是()
(3)存在,共有3个.
当S=10时,求得P点为(-1,),若平行四边形以MB、MP为邻边,如图,BE∥MD,PE∥MB,可设直线BE的解析式为,将B点坐标代入得,所以BE的解析式为;同样可求得PE的解析式为,解方程组
得E点为(4,)
[{备注:同理可证另外两个点,另两个点的坐标为(-6,-4)和}
本题考查了一次函数的几何问题,掌握一次函数的性质、三角形的面积公式、对角线互相平分的四边形是平行四边形、线段的中点坐标的确定方法是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
平均分
方差
标准差
甲
80
4
2
乙
80
16
4
2024年浙江省宁波市东恩中学数学九上开学调研试题【含答案】: 这是一份2024年浙江省宁波市东恩中学数学九上开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年天津市河北区扶轮中学数学九上开学调研试题【含答案】: 这是一份2024年天津市河北区扶轮中学数学九上开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年苏州市重点中学数学九上开学调研试题【含答案】: 这是一份2024年苏州市重点中学数学九上开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。