2025届河北省大城县数学九上开学学业水平测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)为考察甲、乙、丙三种小麦的长势,在同一时期分别从中随机抽取部分麦苗,计算后得到苗高(单位:cm)的方差为,,,则麦苗高度最整齐的是( )
A.甲B.乙C.丙D.都一样
2、(4分)若是三角形的三边长,则式子的值( ).
A.小于0B.等于0C.大于0D.不能确定
3、(4分)抛物线y=ax2+bx和直线y=ax+b在同一坐标系的图象可能是( )
A.B.C.D.
4、(4分)如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的面积分别为m,n,H为线段DF的中点,则BH的长为( )
A.B.C.D.
5、(4分)如图,中,对角线、相交于点O,交于点E,连接,若的周长为28,则的周长为( )
A.28B.24C.21D.14
6、(4分)下列说法正确的是 ( )
A.对角线相等且互相垂直的四边形是菱形
B.对角线互相垂直平分的四边形是正方形
C.对角线互相垂直的四边形是平行四边形
D.对角线相等且互相平分的四边形是矩形
7、(4分)某次知识竞赛共有道题,每一题答对得分,答错或不答扣分,小亮得分要超过分,他至少要答对多少道题?如果设小亮答对了道题,根据题意列式得( )
A.B.
C.D.
8、(4分)若方程 + = 3有增根,则a的值为( )
A.1B.2C.3D.0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)关于x的一元二次方程x2+3x+m﹣2=0有一个根为1,则m的值等于______.
10、(4分)二次根式中字母 a 的取值范围是______.
11、(4分)已知,则__________.
12、(4分)如果一个n边形的内角和等于它的外角和的3倍,则n=______.
13、(4分)在菱形中,其中一个内角为,且周长为,则较长对角线长为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)阅读以下例题:解不等式:(x 4) (x 1) 1
解:①当 x 4 1 ,则 x 1 1
即可以写成:
解不等式组得:
②当若 x 4 1 ,则 x 1 1
即可以写成:
解不等式组得:
综合以上两种情况:不等式解集: x 1或.
(以上解法依据:若ab 1 ,则a,b 同号)请你模仿例题的解法,解不等式:
(1) (x 1)(x 2) 1;
(2) (x 2)(x 3) 1.
15、(8分)如图,在边长为的正方形四个角上,分别剪去大小相等的等腰直角三角形,当三角形的直角边由小变大时,阴影部分的面积也随之发生变化,它们的变化情况如下:
(1)在这个变化过程中,自变量、因变量各是什么?
(2)请将上述表格补充完整;
(3)当等腰直角三角形的直角边长由增加到时,阴影部分的面积是怎样变化的?
(4)设等腰直角三角形的直角边长为,图中阴影部分的面积为,写出与的关系式.
16、(8分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE
求证:(1)△ABF≌△DCE;
(2)四边形ABCD是矩形.
17、(10分)(1)发现.①;②;③;……写出④ ;⑤ ;
(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;
(3)证明这个猜想.
18、(10分)如图,将等腰△ABC绕顶点B逆时针方向旋转40°得到△A1BC1,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.
求证:ΔBCF≌ΔBA1D.
当∠C=40°时,请你证明四边形A1BCE是菱形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)当_____________时,在实数范围内有意义.
20、(4分)某校组织演讲比赛,从演讲主题、演讲内容、整体表现三个方面对选手进行评分.评分规则按主题占,内容占,整体表现占,计算加权平均数作为选手的比赛成绩.小强的各项成绩如表,他的比赛成绩为__分.
21、(4分)如图,是矩形的边上一点,以为折痕翻折,使得点的对应点落在矩形内部点处,连接,若,,当是以为底的等腰三角形时, ___________.
22、(4分)如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y=﹣(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为_____.
23、(4分)如图所示,点P是正方形ABCD的对角线BD上一点,PE⊥BC于E,PF⊥CD于F,连接EF,给出下列四个结论:①AP=EF;②△APD一定是等腰三角形;③∠PFE=∠BAP;④PD=EC,其中正确结论的序号是_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某市建设全长540米的绿化带,有甲、乙两个工程队参加.甲队平均每天绿化的长度是乙队的1.5倍.若由一个工程队单独完成绿化,乙队比甲队对多用6天,分别求出甲、乙两队平均每天绿化的长度。
25、(10分)四川汶川大地震牵动了三百多万滨州人民的心,全市广大中学生纷纷伸出了援助之手,为抗震救灾踊跃捐款。滨州市振兴中学某班的学生对本校学生自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据。下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元的学生一共42人。
(1)他们一共调查了多少人?
(2)这组数据的众数、中位数各是多少?
(3)若该校共有1560名学生,估计全校学生捐款多少元?
26、(12分)在平面直角坐标系中,直线l1:y=x+5与反比例函数y=(k≠0,x>0)图象交于点A(1,n);另一条直线l2:y=﹣2x+b与x轴交于点E,与y轴交于点B,与反比例函数y=(k≠0,x>0)图象交于点C和点D(,m),连接OC、OD.
(1)求反比例函数解析式和点C的坐标;
(2)求△OCD的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据方差的定义,方差越小数据越稳定.由此即可解答.
【详解】
∵,,,
∴S丙2>S甲2>S乙2,方差最小的为乙,
∴麦苗高度最整齐的是乙.
故选B.
本题考查了方差的应用,方差是用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)的统计量. 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
2、A
【解析】
先利用平方差公式进行因式分解,再利用三角形三边关系定理进行判断即可得解.
【详解】
解:=(a-b+c)(a-b-c)
根据三角形两边之和大于第三边,两边之差小于第三边,
(a-c+b)(a-c-b)<0
故选A.
本题考查了多项式因式分解的应用,三角形三边关系的应用,熟练掌握三角形三条边的关系是解答本题的关键.
3、A
【解析】
试题分析:A、由二次函数的图象可知a>0,﹣>0,可得b<0,此时直线y=ax+b经过一,三,四象限,故A正确;
B、由二次函数的图象可知a>0,﹣>0,可得b<0,此时直线y=ax+b经过一,三,四象限,故B错误;
C、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、三象限,故C错误;
D、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、三象限,故D错误;
正确的只有A.
故选A.
考点:1.二次函数的图象;2.一次函数的图象.
4、A
【解析】
连接BD,BF可证△ DBF为直角三角形,在通过直角三角形中斜边上的中线等于斜边的一半即可
【详解】
如图连接BD,BF;
∵四边形ABCD和四边形BEFG都为正方形,AB=m,BE=n,
∴∠ DBF=90°,DB=,BF=,
∴DF=,
∵H为DF的中点,
∴ BH==,故选A
熟练掌握直角三角形中斜边上的中线等于斜边的一半和辅助线作法是解决本题的关键
5、D
【解析】
根据平行四边形的性质和中垂线定理,再结合题意进行计算,即可得到答案.
【详解】
解:∵四边形是平行四边形,
∴,,,
∵平行四边形的周长为28,
∴
∵,
∴是线段的中垂线,
∴,
∴的周长,
故选:D.
本题考查平行四边形的性质和中垂线定理,解题的关键是熟练掌握平行四边形的性质和中垂线定理.
6、D
【解析】
分别根据菱形、正方形、平行四边形和矩形的判定逐项判断即可.
【详解】
对角线相等且互相垂直的四边形不一定是平行四边形,更不一定是菱形,故A不正确;
对角线互相垂直平分的四边形为菱形,但不一定是正方形,故B不正确;
对角线互相垂直的四边形,其对角线不一定会平分,故不一定是平行四边形,故C不正确;
对角线互相平分说明四边形为平行四边形,又对角线相等,可知其为矩形,故D正确;
故选:D.
考查平行四边形及特殊平行四边形的判定,掌握平行四边形及特殊平行四边形的对角线所满足的条件是解题的关键.
7、D
【解析】
小亮答对题的得分:,小亮答错题的得分:,不等关系:小亮得分要超过分.
【详解】
根据题意,得
.
故选:.
此题主要考查了由实际问题抽象出一元一次不等式,抓住关键词语,找到不等关系是解题的关键.
8、A
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出a的值.
【详解】
方程两边都乘(x-2),得
x-1-a=3(x-2)
∵原方程增根为x=2,
∴把x=2代入整式方程,得a=1,
故选:A.
考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于m的方程,从而求得m的值.
【详解】
解:将x=1代入方程得:1+3+m﹣1=0,
解得:m=﹣1,
故答案为﹣1.
本题主要考查了方程的解的定义.就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
10、.
【解析】
运用二次根式中的被开方数的非负性进行求解即可,即有意义,则a≥0.
【详解】
解:由题意得2a+5≥0,解得:.
故答案为.
本题考查了二次根式的意义和性质,对于二次根式而言,关键是要注意两个非负性:一是a≥0,二是≥0;在各地试卷中是高频考点.
11、1
【解析】
直接利用二次根式非负性得出a,b的值,进而得出答案.
【详解】
∵,
∴a=−1,b=1,
∴−1+1=1.
故答案为:1.
此题主要考查了非负数的性质,正确得出a,b的值是解题关键.
12、1
【解析】
根据多边形内角和公式110°(n-2)和外角和为360°可得方程110(n-2)=360×3,再解方程即可.
【详解】
解:由题意得:110(n-2)=360×3,
解得:n=1,
故答案为:1.
此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.
13、
【解析】
由菱形的性质可得,,,由直角三角形的性质可得,由勾股定理可求的长,即可得的长.
【详解】
解:如图所示:
菱形的周长为,
,,,
,
,
,
.
.
故答案为:.
本题考查了菱形的性质,直角三角形角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)x>2或 x<-1;(2)-2<x<2.
【解析】
(1)根据例题可得:此题分两个不等式组和,分别解出两个不等式组即可;
(2)根据两数相乘,异号得负可得此题也分两种情况和解出不等式组即可.
【详解】
解:(1)当x+1>1时,x-2>1,可以写成,
解得:x>2;
当x+1<1时,x-2<1,可以写成,
解得:x<-1,
综上:不等式解集:x>2或 x<-1;
(2)当x+2>1时,x-2<1,可以写成,
解得-2<x<2;
当x+2<1时,x-2>1,可以写成,
解得:无解,
综上:不等式解集:-2<x<2.
此题主要考查了不等式的解法,关键是正确理解例题的解题根据,然后再进行计算.
15、 (1) 自变量:三角形的直角边长,因变量:阴影部分的面积;(2)见解析;(3) .
【解析】
(1)根据定义确定自变量、因变量即可;
(2)根据题意计算即可;
(3)观察数据表格确定阴影面积变化趋势;
(4)阴影面积为正方形面积减去四个等腰直角三角形面积.
【详解】
解:(1)在这个变化过程中,自变量:三角形的直角边长,因变量:阴影部分的面积;
(2)等腰直角三角形直角边长为6时,阴影面积为202-4× ×62=328,
等腰直角三角形直角边长为9时,阴影面积为202-4××92=238;
(3)当等腰直角三角形的直角边长由增加到时,阴影部分的面积由减小到;
(4).
故答案为:(1) 自变量:三角形的直角边长,因变量:阴影部分的面积; (2)见解析; (3) .
本题考查函数关系式,函数求值,涉及到了函数的定义、通过数值变化观察函数值变化趋势.熟练掌握正方形和等腰直角三角形的面积公式是解题的关键.
16、(1)见解析;(2)见解析.
【解析】
(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.
(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.
【详解】
(1)∵BE=CF,BF=BE+EF,CE=CF+EF,
∴BF=CE.
∵四边形ABCD是平行四边形,
∴AB=DC.
在△ABF和△DCE中,
∵AB=DC,BF=CE,AF=DE,
∴△ABF≌△DCE.
(2)∵△ABF≌△DCE,
∴∠B=∠C.
∵四边形ABCD是平行四边形,
∴AB∥CD.
∴∠B+∠C=180°.
∴∠B=∠C=90°.
∴平行四边形ABCD是矩形.
17、(1),;(2);(3)证明见解析.
【解析】
(1)根据题目中的例子直接写出结果;
(2)根据(1)中的特例,可以写出相应的猜想;
(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题.
【详解】
解:(1)由例子可得,
④为:==,⑤=,
(2)如果n为正整数,用含n的式子表示这个运算规律:= ,
(3)证明:∵n是正整数,
∴==.
即= .
故答案为(1)==,=;(2)= ;(3)证明见解析.
本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.
18、(1)详见解析;(2)详见解析.
【解析】
试题分析:(1)根据旋转的性质,得出A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,再根据ASA即可判定△BCF≌△BA1D;
(2)根据∠C=40°,△ABC是等腰三角形,即可得出∠A=∠C1=∠C=40°,进而得到∠C1=∠CBF,∠A=∠A1BD,由此可判定A1E∥BC,A1B∥CE,进而得到四边形A1BCE是平行四边形,最后根据A1B=BC,即可判定四边形A1BCE是菱形.
(1)∵△ABC是等腰三角形,
∴AB=BC,∠A=∠C,
∵将等腰△ABC绕顶点B逆时针方向旋转40度到△A1BC1的位置,
∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,
在△BCF与△BA1D中,,
∴△BCF≌△BA1D(ASA);
(2)∵∠C=40°,△ABC是等腰三角形,
∴∠A=∠C1=∠C=40°,
∴∠C1=∠CBF=40°,∠A=∠A1BD=40°,
∴A1E∥BC,A1B∥CE,
∴四边形A1BCE是平行四边形,
∵A1B=BC,
∴四边形A1BCE是菱形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、a≥1
【解析】
根据二次根式有意义的条件可得a-1≥0,再解不等式即可.
【详解】
由题意得:a-1≥0,
解得:a≥1,
故答案为: a≥1.
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
20、1
【解析】
根据加权平均数的计算公式列式计算可得.
【详解】
解:根据题意,得小强的比赛成绩为,
故答案为1.
本题考查了加权平均数的计算方法,在进行计算时候注意权的分配,另外还应细心,否则很容易出错.
21、
【解析】
过点B'作B'F⊥AD,延长FB'交BC与点G,可证四边形ABGF是矩形,AF=BG=4,∠BGF=90°,由勾股定理可求B'F=3,可得B'G=2,由勾股定理可求BE的长.
【详解】
解:如图,过点B'作B'F⊥AD,延长FB'交BC与点G,
∵四边形ABCD是矩形
∴AD=BC=8,∠DAB=∠ABC=90°
∵AB'=B'D,B'F⊥AD
∴AF=FD=4,
∵∠DAB=∠ABC=90°,B'F⊥AD
∴四边形ABGF是矩形
∴AF=BG=4,∠BGF=90°
∵将△ABE以AE为折痕翻折,
∴BE=B'E,AB=AB'=5
在Rt△AB'F中,
∴B'G=2
在Rt△B'EG中,B'E2=EG2+B'G2,
∴BE2=(4-BE)2+4
∴BE=
故答案为:.
本题考查了翻折变换,矩形的判定与性质,等腰三角形的性质,勾股定理,求B'G的长是本题的关键.
22、
【解析】
【分析】设出点P坐标,分别表示点AB坐标,由题意△ABC面积与△ABO的面积相等,因此只要求出△ABO的面积即可得答案..
【详解】设点P坐标为(a,0)
则点A坐标为(a,),B点坐标为(a,﹣)
∴S△ABC=S△ABO =S△APO+S△OPB==,
故答案为.
【点睛】本题考查了反比例函数中比例系数k的几何意义,熟练掌握相关知识是解题的关键.
23、①③④.
【解析】
连接PC,根据正方形的对角线平分一组对角可得∠ABP=∠CBP=45°,然后利用“边角边”证明△ABP和△CBP全等,根据全等三角形对应边相等可得AP=PC,对应角相等可得∠BAP=∠BCP,再根据矩形的对角线相等可得EF=PC,对边相等可得PF=EC,再判断出△PDF是等腰直角三角形,然后根据等腰直角三角形的斜边等于直角边的倍解答即可.
【详解】
解:如图,连接PC,在正方形ABCD中,∠ABP=∠CBP=45°,AB=CB,
∵在△ABP和△CBP中,
,
∴△ABP≌△CBP(SAS),
∴AP=PC,∠BAP=∠BCP,
又∵PE⊥BC,PF⊥CD,
∴四边形PECF是矩形,
∴PC=EF,∠BCP=∠PFE,
∴AP=EF,∠PFE=∠BAP,故①③正确;
∵PF⊥CD,∠BDC=45°,
∴△PDF是等腰直角三角形,
∴PD=PF,
又∵矩形的对边PF=EC,
∴PD=EC,故④正确;
只有点P为BD的中点或PD=AD时,△APD是等腰三角形,故②错误;
综上所述,正确的结论有①③④.
故答案为:①③④.
本题考查正方形的性质,矩形的判定与性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,综合性较强,但难度不大,连接PC构造出全等三角形是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、甲队平均每天绿化45米,乙队平均每天绿化30米
【解析】
设乙队平均每天绿化x米, 由时间=工作量÷工作效率,结合乙队比甲队多用6天列分式方程,解出x, 再代入方程检验即可求出x, 则乙队平均每天绿化多少米也可求.
【详解】
设乙队平均每天绿化x米,则甲队平均每天绿化1.5x米,
依题意得
解得x=30
经检验x=30是原方程的根且符合题意,
∴1.5x=45(米),
答:甲队平均每天绿化45米,乙队平均每天绿化30米。
此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列方程.
25、(1)捐款人数共有 78人;(2)众数为 25(元);中位数为 25(元),(3)全校共捐款34200元
【解析】
(1)各长方形的高度之比为3:4:5:8:6,就是已知捐款人数的比是3:4:5:8:6,求一共调查多少人可以根据捐款25元和30元的学生一共42人.就可以求出调查的总人数;
(2)众数就是出现次数最多的数,中位数就是按大小顺序排列处于中间位置的两个数的平均数;
(3)估计全校学生捐款数,就可以先求出这些人的学生的平均捐款数,可以近似等于全校学生的平均捐款数.
【详解】
解:(1)设捐款 30 元的有 6 x 人,则 8 x +6x=42,得 x=3。则捐款人数共有 3 x+4 x+5 x+8 x+6 x=78(人);
(2)由图象可知:众数为 25(元);
由于本组数据的个数为 78,按大小顺序排列处于中间位置的两个数都是 25(元),
故中位数为 25(元);
(3)全校共捐款(9×10+12×15+15×20+24×25+18×30)×=34200(元).
故答案为:(1)捐款人数共有 78人;(2)众数为 25(元);中位数为 25(元);(3)全校共捐款34200元.
本题考查平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位.并且本题考查了总体与样本的关系,可以用样本估计总体.
26、(1)y=,点C(6,1);(2).
【解析】
(1)点A(1,n)在直线l1:y=x+5的图象上,可求点A的坐标,进而求出反比例函数关系式,点D在反比例函数的图象上,求出点D的坐标,从而确定直线l2:y=﹣2x+b的关系式,联立求出直线l2与反比例函数的图象的交点坐标,确定点C的坐标,
(2)求出直线l2与x轴、y轴的交点B、E的坐标,利用面积差可求出△OCD的面积.
【详解】
解:(1)∵点A(1,n)在直线l1:y=x+5的图象上,
∴n=6,
∴点A(1,6)代入y=得,
k=6,
∴反比例函数y=,
当x=时,y=12,
∴点D(,12)代入直线l2:y=﹣2x+b得,
b=13,
∴直线l2:y=﹣2x+13,
由题意得:解得:,,
∴点C(6,1)
答:反比例函数解析式y=,点C的坐标为(6,1).
(2)直线l2:y=﹣2x+13,与x轴的交点E(,0)与y轴的交点B(0,13)
∴S△OCD=S△BOE﹣S△BOD﹣S△OCE
答:△OCD的面积为.
本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题、以及反比例函数与几何面积的求解,解题的关键是灵活处理反比例函数与一次函数及几何的关系.
题号
一
二
三
四
五
总分
得分
批阅人
三角形的直角边长/
1
2
3
4
5
6
7
8
9
10
阴影部分的面积/
398
392
382
368
350
302
272
200
主题
内容
整体表现
85
92
90
三角形的直角边长/
1
2
3
4
5
6
7
8
9
10
阴影部分的面积/
328
238
2025届广东省乳源县九上数学开学学业水平测试模拟试题【含答案】: 这是一份2025届广东省乳源县九上数学开学学业水平测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年宁夏吴忠市名校九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024年宁夏吴忠市名校九上数学开学学业水平测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖南邵阳县九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024年湖南邵阳县九上数学开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。