2025届河南省商丘市柘城县实验中学九上数学开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分) “龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是( )
A.B.C.D.
2、(4分)下列图形中,既是轴对称又是中心对称图形的是( )
A.菱形B.等边三角形C.平行四边形D.直角三角形
3、(4分)如图,▱ OABC 的顶点 O、A、C 的坐标分别是(0,0),(2,0),(0.5,1),则点 B 的坐 标是( )
A.(1,2)B.(0.5,2)C.(2.5,1)D.(2,0.5)
4、(4分)如图,已知一次函数,随着的增大而增大,且,则在直角坐标系中它的图象大致是( )
A.B.C.D.
5、(4分)下列汽车标志中,是中心对称图形的是( )
A.B.C.D.
6、(4分)如图,在Rt△ABC中,∠A=30°,DE是斜边AC的中垂线,分别交AB,AC于D、E两点,若BD=2,则AC的长是( )
A.2B.3C.4D.8
7、(4分)2022年将在北京-张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差:
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )
A.队员1B.队员2C.队员3D.队员4
8、(4分)以下列各组数作为三角形的边长,其中不能构成直角三角形的是( )
A.1,,B.3,5,4
C.1,1,2D.6,8,10
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,正方形ABCD的边长为a,E是AB的中点,CF平分∠DCE,交AD于F,则AF的长为______.
10、(4分)在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= .
11、(4分)2x-3>- 5的解集是_________.
12、(4分)把一个转盘平均分成三等份,依次标上数字1、2、3,自由转动转盘两次,把第一次转动停止后指针指向的数字记作x,把第二次转动停止后指针指向的数字记作y,则x与y的和为偶数的概率为______.
13、(4分)如图,已知矩形的长和宽分别为4和3,、,,依次是矩形各边的中点,则四边形的周长等于______.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉子听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉子得1分,本次决赛,学生成绩为x(分),且(无满分),将其按分数段分为五组,绘制出以下不完整表格:
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有________名学生参加;
(2)直接写出表中:a= ,b= 。
(3)请补全右面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为________.
15、(8分)如图,平行四边形中,对角线与相交于点,点为的中点,连接,的延长线交的延长线于点,连接.
(1)求证:;
(2)若,∠BCD=120°判断四边形的形状,并证明你的结论.
16、(8分)教材第97页在证明“两边对应成比例且夹角对应相等的两个三角形相似”(如图,已知,求证:)时,利用了转化的数学思想,通过添设辅助线,将未知的判定方法转化为前两节课已经解决的方法(即已知两组角对应相等推得相似或已知平行推得相似).利用上述方法完成这个定理的证明.
17、(10分)某项工程由甲乙两队分别单独完成,则甲队用时是乙队的1.5倍:若甲乙两队合作,则需12天完成,请问:
(1)甲,乙两队单独完成各需多少天;
(2)若施工方案是甲队先单独施工天,剩下工程甲乙两队合作完成,若甲队施工费用为每天1.5万元,乙队施工费为每天3.5万元求施工总费用(万元)关于施工时间(天)的函数关系式
(3)在(2)的方案下,若施工期定为15~18天内完成(含15和18天),如何安排施工方案使费用最少,最少费用为多少万元?
18、(10分)已知y是x的一次函数,且当x=-4,y=9;当x=6时,y=-1.
(1)求这个一次函数的解析式和自变量x的取值范围;
(2)当x=-时,函数y的值;
(3)当y=7时,自变量x的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一次跳远中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有____人.
20、(4分)已知x=+5,则代数式(x﹣3)2﹣4(x﹣3)+4的值是_____.
21、(4分)一个正多边形的每个外角等于72°,则它的边数是__________.
22、(4分)已知函数y=2x2-3x+l,当y=1时,x=_____.
23、(4分)当0<m<3时,一元二次方程x2+mx+m=0的根的情况是_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下分,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).
(1)求线段CD的长;
(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;
(3)当点P在线段AD上运动时,求S与t的函数关系式.
25、(10分)分解因式
(1)
(2)
26、(12分)如图,平行四边形中,在边上,,为平行四边形外一点,连接、,连接交于,且.
(1)若,,求平行四边形的面积;
(2)求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
【分析】根据领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到达终点,即可判断.
【详解】领先的兔子看着缓慢爬行的乌龟,兔子骄傲起来,睡了一觉,在图形上来看在一段时间内兔子所行路程不变,当它醒来时,发现乌龟快到了终点了,于是急忙追赶,但为时已晚,乌龟先到达了终点,说明乌龟到达终点时兔子还没到达,所以排除A、C、D,
所以符合题意的是B,
故选B.
【点睛】本题考查了函数的图象,解答本题的关键是读懂题意及图象,弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.
2、A
【解析】
根据轴对称图形和中心对称图形对各选项分析判断即可得解.
【详解】
A. 菱形既是轴对称又是中心对称图形,故本选项正确;
B. 等边三角形是轴对称,不是中心对称图形,故本选项错误;
C. 平行四边形不是轴对称,是中心对称图形,故本选项错误;
D. 直角三角形不是轴对称(等腰直角三角形是),也不是中心对称图形,故本选项错误.
故选A.
本题主要考查图形的中心对称和图形的轴对称概念,熟悉掌握概念是关键.
3、C
【解析】
延长BC交y轴于点D,由点A的坐标得出OA=2,由平行四边形的性质得出BC=OA=2,由点C的坐标得出OD=1,CD=0.5,求出BD=BC+CD=2.5,即可得出点B的坐标.
【详解】
延长BC交y轴于点D,如图所示:
∵点A的坐标为(2,0),
∴OA=2,
∵四边形OABC是平行四边形,
∴BC=OA=2,
∵点C的坐标是(0.5,1),
∴OD=1,CD=0.5,
∴BD=BC+CD=2.5,
∴点B的坐标是(2.5,1);
故选:C.
此题考查坐标与图形性质,平行四边形的性质,解题关键在于作辅助线.
4、A
【解析】
首先根据一次函数的增减性确定k的符号,然后根据确定b的符号,从而根据一次函数的性质确定其图形的位置即可.
【详解】
∵随的增大而增大,
∴.
又∵,
∴,
∴一次函数过第一、三、四象限,
故选A.
本题考查的是一次函数的图象与系数的关系,熟知函数y=kx+b(k≠0)中,当k>0,b<0时函数的图象在一、三、四象限是解答此题的关键.
5、D
【解析】
根据中心对称图形的概念即可解答.
【详解】
选项A,旋转180°,与原图形不能够完全重合,不是中心对称图形;
选项B,旋转180°,不能与原图形能够完全重合,不是中心对称图形;
选项C,旋转180°,不能与原图形能够完全重合,不是中心对称图形;
选项D,旋转180°,能与原图形能够完全重合,是中心对称图形;
故选D.
本题考查了中心对称图形的概念,熟练运用中心对称图形的概念(在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形)是解决问题的关键.
6、C
【解析】
直接利用线段垂直平分线的性质得出AD=CD,进而结合已知角得出DC,BC的长,进而利用勾股定理得出答案.
【详解】
连接DC,
在Rt△BCA中,∵DE为AC的垂直平分线,
∴AD=CD,
∴∠A=∠DCA=30°,
∴∠BDC=60°,
在Rt△CBD中,BD=2,
,
解得:DC=4,BC=2,
在Rt△CBA中,BC=2,AC=2BC=4
故选C.
此题主要考查了含30度角的直角三角形和线段垂直平分线的性质,正确得出DC的长是解题关键.
7、B
【解析】
据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
因为队员1和2的方差最小,但队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定.
故选B.
考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
8、C
【解析】
根据勾股定理的逆定理对四个答案进行逐一判断即可,
【详解】
解:A、∵,∴能构成直角三角形;
B.. ∵,∴能构成直角三角形;
C..:∵,∴不能构成直角三角形;
D.:∵,∴能构成直角三角形.
故选:C.
本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、a
【解析】
找出正方形面积等于正方形内所有三角形面积的和求这个等量关系,列出方程求解,求得DF,根据AF=a-DF即可求得AF.
【详解】
作FH⊥CE,连接EF,
∵∠FHC=∠D=90°,∠HCF=∠DCF,CF=CF
∴△CHF≌△CDF,
又∵S正方形ABCD=S△CBE+S△CDF+S△AEF+S△CEF,
设DF=x,则a2= CE•FH
∵FH=DF,CE= ,
∴整理上式得:2a-x= x,
计算得:x= a.
AF=a-x= a.
故答案为a.
本题考查了转换思想,考查了全等三角形的证明,求AF,转化为求DF是解题的关键.
10、1。
【解析】
试题分析: ∵四边形ABCD是矩形,
∴OA=OB
又∵∠AOB=60°
∴△AOB是等边三角形.
∴AB=OA=AC=1,
故答案是:1.
考点:含30度角的直角三角形;矩形的性质.
11、x>-1.
【解析】
先移项,再合并同类项,化系数为1即可.
【详解】
移项得,2x>-5+3,
合并同类项得,2x>-2,
化系数为1得,x>-1.
故答案为:x>-1.
本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.
12、
【解析】
画出树状图得出所有等可能结果与两数和为偶数的结果数,然后根据概率公式列式计算即可得解.
【详解】
解:根据题意,画出树状图如下:
一共有9种等可能情况,其中x与y的和为偶数的有5种结果,
∴x与y的和为偶数的概率为 ,
故答案为:.
本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
13、1
【解析】
直接利用矩形的性质结合勾股定理得出EF,FG,EH,HG的长即可得出答案.
【详解】
∵矩形ABCD的长和宽分别为4和3,E、F、G、H依次是矩形ABCD各边的中点,
∴AE=BE=CG=DG=1.5,AH=DH=BF=FC=2,
∴EH=EF=HG=GF=,
∴四边形EFGH的周长等于4×2.5=1
故答案为1.
此题主要考查了中点四边形以及勾股定理,正确应用勾股定理是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)50;(2)20,0.24;(3)详见解析;(4)52%.
【解析】
(1)根据表格中的数据可以求得本次决赛的学生数;
(2)根据(1)中决赛学生数,可以求得a、b的值;
(3)根据(2)中a的值,可以将频数分布直方图补充完整;
(4)根据表格中的数据可以求得本次大赛的优秀率.
【详解】
解:(1)由表格可得,
本次决赛的学生数为:10÷0.2=50,
故答案为:50;
(2)a=50×0.4=20,b=12÷50=0.24,
故答案为:20,0.24;
(3)补全的频数分布直方图如右图所示,
(4)由表格可得,
决赛成绩不低于80分为优秀率为:(0.4+0.12)×100%=52%,
故答案为:52%.
本题考查频数分布直方图、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.
15、(1)见解析;(2)四边形是矩形,见解析.
【解析】
(1)只要证明AB=CD,AF=CD即可解决问题;
(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;
【详解】
(1)∵四边形是平行四边形
∴
∴
∵,
∴
∴
∴.
(2)结论:四边形ACDF是矩形。
理由:∵AF=CD,AF∥CD,
∴四边形ACDF是平行四边形,
∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD=120∘,
∴∠FAG=60∘,
∵AB=AG=AF,
∴△AFG是等边三角形,
∴AG=GF,
∵△AGF≌△DGC,
∴FG=CG,∵AG=GD,
∴AD=CF,
∴四边形ACDF是矩形
此题考查矩形的判定,全等三角形的判定与性质,平行四边形的性质,解题关键在于利用全等三角形的性质进行证明
16、见解析
【解析】
在AB上截取AG=DE,作GH∥BC,则可得△AGH∽△ABC,再由已知条件证明△AGH≌△DEF即可证明:△ABC∽△DEF.
【详解】
证明:在上截取,作.
.
.
∵,
∴,
∵,
∴,
∴.
本题考查了相似三角形的判定和性质以及全等三角形的判定,解题的关键是正确作出辅助线构造全等三角形.
17、(1)甲、乙两队单独完成分别需30天,20天;(2)y=0.5x+60;(3)甲队先施工10天,再甲乙合作8天,费用最低为55万元
【解析】
(1)设乙队单独完成需a天,则甲队单独完成需1.5a天,根据题意列出方程即可求解;
(2)设甲乙合作完成余下部分所需时间为w天,根据题意得到w与x的关系,根据题意即可写出y与x的关系式;
(3)根据施工期定为15~18天内完成得到x的取值范围,再根据一次函数的性质求出y的最小值.
【详解】
(1)设乙队单独完成需a天,则甲队单独完成需1.5a天,
根据题意列:,
解得,a=20,经检验:a=20是所列方程的根,且符合题意,所以1.5a=30,
答:甲、乙两队单独完成分别需30天,20天;
(2)设甲乙合作完成余下部分所需时间为w天,
依题意得,
解得,w=x+12
∴y=1.5x+(1.5+3.5)(x+12)=-0.5x+60;
(3)由题可得15≤xx+12≤18,
解得5≤x≤10,
∵y=-0.5x+60中k<0,
∴y随x的增大而减小,
∴当x=10时,y最小=-0.5×10+60=55,
此时,甲队先施工10天,再甲乙合作8天,费用最低为55万元.
此题主要考查分式方程的应用和解法,一次函数的性质等知识,正确的列出分式方程、求出费用与时间之间的函数关系式是解决问题的关键.
18、(1)一次函数的解析式为y=-x+5,自变量x的取值范围是x取任意实数;(2)5.5;(3)x=-2
【解析】
(1)设y=kx+b,代入(-4,9)和(6,-1)得关于k和b的方程组,解方程组即可;
(2)代入x=-于函数式中即可求出y值;
(3)把y=7代入函数式,即可求解x的值.
【详解】
解:(1)设y=kx+b,
代入(-4,9)和(6,-1)得,
解得k=-1,b=5,
所以一次函数的解析式为y=-x+5,自变量x的取值范围是:x取任意实数;
(2)当x=-时,y=-(-)+5=5.5;
(3)当y=7时,即7=-x+5,
解得x=-2.
本题主要考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征,解决这类问题一般先设函数的一般式,再代入两个点构造方程组求解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、20
【解析】
根据频率的计算公式即可得到答案.
【详解】
解:
所以可得参加比赛的人数为20人.
故答案为20.
本题主要考查频率的计算公式,这是数据统计的重点知识,必须掌握.
20、1
【解析】
将代入原式=(x-3-2)2=(x-1)2计算可得.
【详解】
当时,
原式
,
故答案为1.
本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式.
21、1
【解析】
根据题意利用多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角的个数,外角的个数就是多边形的边数.
【详解】
解:360÷72=1.
故它的边数是1.
故答案为:1.
本题考查多边形内角与外角,根据正多边形的外角和求多边形的边数是解题的关键.
22、0或
【解析】
把y=1时代入解析式,即可求解.
【详解】
解:当y=1时,则1=2x2-3x+1,
解得:x=0或x=,
故答案为0或.
本题考查的是二次函数图象上的点坐标特征,只要把y值代入函数表达式求解即可.
23、无实数根
【解析】
根据一元二次方程根的判别式判断即可
【详解】
一元二次方程x2+mx+m=0,则△=m2-4m=(m-2)2-4,当0<m<3时,△<0,故无实数根
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
二、解答题(本大题共3个小题,共30分)
24、(1)CD=;(2)≤t≤;(3)当0<t<时,S=;当≤t≤时, S=2;当<t≤时,S=.
【解析】
(1)由勾股定理得出AB=10,由△ABC的面积得出AC•BC=AB•CD,即可得出CD的长;
(2)分两种情形:①当点N在线段CD上时,如图1所示,利用相似三角形的性质求解即可.②当点Q在线段CD上时,如图2所示,利用相似三角形的性质求解即可;
(3)首先求出点Q落在AC上的运动时间t,再分三种情形:①当0<t<时,重叠部分是矩形PNYH,如图4所示,②当≤t≤时,重合部分是矩形PNMQ,S=PQ•PN=2,③当<t≤时,如图5中重叠部分是五边形PQMJI,分别求解即可.
【详解】
解:(1)∵∠ACB=90°,AC=8,BC=1,
∴AB==10,
∵S△ABC=AC•BC=AB•CD,
∴AC•BC=AB•CD,即:8×1=10×CD,
∴CD=;
(2)在Rt△ADC中,AD=,BD=AB−AD=,
当点N在线段CD上时,如图1所示:
∵矩形PQMN,PQ总保持与AC垂直,
∴PN∥AC,
∴∠NPD=∠CAD,
∵∠PDN=∠ADC,
∴△PDN∽△ADC,
∴,即:,
解得:PD=,
∴t=AD−PD=;
当点Q在线段CD上时,如图2所示:
∵PQ总保持与AC垂直,
∴PQ∥BC,△DPQ∽△DBC,
∴,即:,
解得:DP=,
∴t=AD+DP=,
∴当矩形PQMN与线段CD有公共点时,t的取值范围为:≤t≤;
(3)当Q在AC上时,如图3所示:
∵PQ总保持与AC垂直,
∴PQ∥BC,△APQ∽△ABC,
∴,即:,
解得:AP=,
当0<t<时,重叠部分是矩形PNYH,如图4所示:
∵PQ∥BC,
∴△APH∽△ABC,
∴,即:,
∴PH=,
∴S=PH•PN=;
当≤t≤时,重合部分是矩形PNMQ,S=PQ•PN=2;
当<t≤时,如图5中重叠部分是五边形PQMJI,
易得△PDI∽△ACB∽△JNI,
∴,即:,
∴PI=(−t)•,
∴,即:,
∴JN=,
S=S矩形PNMQ−S△JIN=2−·()·[1−(−t)•]=.
本题属于四边形综合题,考查了勾股定理解直角三角形,矩形的性质,相似三角形的判定和性质,多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
25、(1);(2)
【解析】
(1)先提取-1,然后利用完全平方公式进行因式分解;(2)先提取(a-5),然后利用平方差公式进行因式分解.
【详解】
解:(1)
=
=
(2)
=
=
=
本题考查提公因式和公式法因式分解,掌握因式分解的技巧正确计算是本题的解题关键.
26、 (1);(2)证明见解析.
【解析】
(1)过点作于点,由求出DH的长,然后根据平行四边形的面积求法求解即可;
(2)在上截取点,使,连接,首先证明和是等边三角形,即可得到,,,然后可证,根据全等三角形的性质易得结论.
【详解】
解:(1)过点作于点,
∵,
∴,
∴,
∵四边形是平行四边形,
∴,
∴,
∴,
(2)在上截取点,使,连接.
∵
∴是等边三角形,
∴,,
∵,,
∴AE=AB,
∵四边形是平行四边形,
∴,
∴是等边三角形,
∴,,
∵,
∴,
∴,
∴,
∴.
本题考查了平行四边形的性质、等边三角形的判定以及三角形全等的判定和性质,根据题意作出常用辅助线是解题关键.
题号
一
二
三
四
五
总分
得分
队员1
队员2
队员3
队员4
平均数(秒)
51
50
51
50
方差(秒2)
3.5
3.5
14.5
15.5
2024年河南省柘城县张桥乡联合中学数学九上开学联考模拟试题【含答案】: 这是一份2024年河南省柘城县张桥乡联合中学数学九上开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省汝州数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年河南省汝州数学九上开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
+2024年河南省商丘市柘城县实验中学中考第五次模拟数学试题: 这是一份+2024年河南省商丘市柘城县实验中学中考第五次模拟数学试题,共31页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。