2025届河南省郑州市金水区为民中学数学九年级第一学期开学质量检测试题【含答案】
展开
这是一份2025届河南省郑州市金水区为民中学数学九年级第一学期开学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为( )
A.1<x<B.1<x<3C.﹣<x<1D.<x<3
2、(4分)如图,小明为了测量校园里旗杆的高度,将测角仪竖直放在距旗杆底部点的位置,在处测得旗杆顶端的仰角为60°若测角仪的高度是,则旗杆的高度约为( )
(精确到.参考数据:)
A.B.C.D.
3、(4分)下列图形:平行四边形、矩形、菱形、等腰梯形、正方形中是轴对称图形的有( )
A.1个B.2个C.3个D.4个
4、(4分)不等式x≤-1的解集在数轴上表示正确的是()
A.B.
C.D.
5、(4分)如图中,点为边上一点,点在上,过点作交于点,过点作交于, 下列结论错误的是( )
A.B.C.D.
6、(4分)用反证法证明“在中,,则是锐角”,应先假设( )
A.在中,一定是直角B.在中,是直角或钝角
C.在中,是钝角D.在中,可能是锐角
7、(4分)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连结CE.若▱ABCD的周长为16,则△CDE的周长是( )
A.16B.10C.8D.6
8、(4分)某商厦信誉楼女鞋专柜试销一种新款女鞋,一个月内销售情况如表所示
经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是( )
A.平均数B.方差C.中位数D.众数
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知在同一坐标系中,某正比例函数与某反比例函数的图像交于 A,B 两点,若点 A 的坐标为(-1,4), 则点 B 的坐标为___.
10、(4分)若三角形的一边长为,面积为,则这条边上的高为______.
11、(4分)已知,则的值是_____________.
12、(4分)如图,已知在矩形中,,,沿着过矩形顶点的一条直线将折叠,使点的对应点落在矩形的边上,则折痕的长为__.
13、(4分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=8cm,EF=15cm,则边AD的长是______cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)解方程:x2﹣4x+3=1.
15、(8分)阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值
解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t=±1因为2m2+n2≥0,所以2m2+n2=1.
上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.
根据以上阅读材料内容,解决下列问题,并写出解答过程.
已知实数x,y满足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.
16、(8分)如图,中任意一点经平移后对应点为,将作同样的平移得到,其中点A与点D,点B与点E,点C与点F分别对应,请解答下列问题:
(1)画出,并写出点D、E、F的坐标..
(2)若与关于原点O成中心对称,直接写出点D的对应点的坐标.
17、(10分)如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.
(1)求证:△AEB≌△CFD;
(2)求证:四边形BFDE是平行四边形.
18、(10分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k≠0)的图象交于A(1,a)、B(b,1)两点.
(1)求反比例函数的表达式;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;
(3)在(2)的条件下,求△PAB的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算的结果为______.
20、(4分)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是把图1放入长方形内得到的,,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为___.
21、(4分)观察式子,,,……,根据你发现的规律可知,第个式子为______.
22、(4分) “五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是_____.
23、(4分)如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE上.若AD=5,BE=2,则AB的长是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知二次函数
(1)若该函数与轴的一个交点为,求的值及该函数与轴的另一交点坐标;
(2)不论取何实数,该函数总经过一个定点,
①求出这个定点坐标;
②证明这个定点就是所有抛物线顶点中纵坐标最大的点。
25、(10分)计算:
(1) ;
(2)(﹣1)(+1)+(﹣2)2
26、(12分)如图,点C,D在线段AB上,△PCD是等边三角形,△ACP∽△PDB,
(1)请你说明CD2=AC•BD;
(2)求∠APB的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
把A(1,k)代入y=ax+4得a=k-4,则解不等式kx-4<ax+4得x<,再结合图象得到x>1时,ax+4<kx,从而得到不等式kx-6<ax+4<kx的解集.
【详解】
解:把A(1,k)代入y=ax+4得k=a+4,则a=k﹣4,
解不等式kx﹣4<ax+4得x<,
而当x>1时,ax+4<kx,
所以不等式kx﹣6<ax+4<kx的解集为1<x<.
故选A.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数的性质.
2、D
【解析】
过D作DE⊥AB,根据矩形的性质得出BC=DE=5m根据30°所对的直角边等于斜边的一半,可得AD=10,根据勾股定理可得的长,根据AB=AE+BE=AE+CD算出答案.
【详解】
过D作DE⊥AB于点E,
∵在D处测得旗杆顶端A的仰角为60°,
∴∠ADE=60°.
∴∠DAE=30°.
∵BC=DE=5m,
AD=2DE=10
∴,
∴AB=AE+BE=AE+CD=8.65+1.6=10.25m≈10.3m.
故答案为:D
本题考查了仰角俯角问题,正确作出辅助线,构造出30°直角三角形模型是解决问题的关键.
3、D
【解析】
根据轴对称图形的概念对各图形分析判断后即可得解.
【详解】
平行四边形不是轴对称图形,
矩形是轴对称图形,
菱形是轴对称图形,
等腰梯形是轴对称图形,
正方形是轴对称图形,
所以,轴对称图形的是:矩形、菱形、等腰梯形、正方形共4个.
故选D.
此题考查轴对称图形,解题关键在于掌握其定义.
4、B
【解析】
根据数轴的表示方法表示即可.(注意等于的时候是实心的原点.)
【详解】
根据题意不等式x≤-1的解集是在-1的左边部分,包括-1.
故选B.
本题主要考查实数的数轴表示,注意有等号时应用实心原点表示.
5、A
【解析】
根据三角形的平行线定理:平行于三角形一边的直线截其他两边所在的 直线 ,截得的三角形的三边与原三角形的三边对应成比例,即可得解.
【详解】
根据三角形的平行线定理,可得
A选项,,错误;
B选项,,正确;
C选项,,正确;
D选项,,正确;
故答案为A.
此题主要考查三角形的平行线定理,熟练掌握,即可解题.
6、B
【解析】
假设命题的结论不成立或假设命题的结论的反面成立,然后推出矛盾,说明假设错误,结论成立.
【详解】
解:用反证法证明命题“在中,,则是锐角”时,应先假设在中,是直角或钝角.
故选:B.
本题考查反证法,记住反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.
7、C
【解析】
根据线段垂直平分线性质得出,然后利用平行四边形性质求出,据此进一步计算出△CDE的周长即可.
【详解】
∵对角线的垂直平分线分别交于,
∴,
∵四边形是平行四边形,
∴,
∴,
∴的周长,
故选:C.
本题主要考查了平行四边形性质与线段垂直平分线性质的综合运用,熟练掌握相关概念是解题关键.
8、D
【解析】
根据众数的定义:一组数据中出现次数最多的数值,即可得解.
【详解】
根据题意,销量最大,即为众数,故答案为D.
此题主要考查对众数的理解运用,熟练掌握,即可解题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 (1,−4)
【解析】
根据反比例函数图象上点的坐标特征,正比例函数与反比例函数的两交点坐标关于原点对称.
【详解】
∵反比例函数是中心对称图形,正比例函数与反比例函数的图象的两个交点关于原点对称,
∵一个交点的坐标为(−1,4),
∴它的另一个交点的坐标是(1,−4),
故答案为:(1,−4).
本题考查反比例函数图象的对称性,解题的关键是掌握反比例函数图象的对称性.
10、4
【解析】
利用面积公式列出关系式,将已知面积与边长代入即可求出高.
【详解】
解:根据题意得:÷×2=4.
此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.
11、7
【解析】
把已知条件两个平方,根据完全平方公式展开整理即可得解;
【详解】
解:;
本题考查了完全平方公式的运用,熟练掌握公式的特点是解题的关键
12、或
【解析】
沿着过矩形顶点的一条直线将∠B折叠,可分为两种情况:(1)过点A的直线折叠,(2)过点C的直线折叠,分别画出图形,根据图形分别求出折痕的长.
【详解】
(1)如图1,沿将折叠,使点的对应点落在矩形的边上的点,
由折叠得:是正方形,此时:,
(2)如图2,沿,将折叠,使点的对应点落在矩形的边上的点,
由折叠得:,
在中,,
,
设,则,
在中,由勾股定理得:,解得:,
在中,由勾股定理得:,
折痕长为:或.
考查矩形的性质、轴对称的性质、直角三角形及勾股定理等知识,分类讨论在本题中得以应用,画出相应的图形,依据图形矩形解答.
13、
【解析】
通过设各线段参数,利用勾股定理和射影定理建立各参数的关系方程,即可解决.
【详解】
解:设AH=e,AE=BE=f,BF=HD=m
在Rt△AHE中,e2+f2=82
在Rt△EFH中,f2=em
在Rt△EFB中,f2+m2=152
(e+m)2=e2+m2+2em=189
AD=e+m=3
故答案为3
本题考查了翻折的性质,利用直角三角形建立方程关系求解.
三、解答题(本大题共5个小题,共48分)
14、x1=1,x2=2.
【解析】
试题分析:本题考查了一元二次方程的解法,用十字相乘法分解因式求解即可.
解:x2﹣4x+2=1
(x﹣1)(x﹣2)=1
x﹣1=1,x﹣2=1
x1=1,x2=2.
15、
【解析】
设t=x2+y2(t≥0),将原方程转化为(4t+3)(4t﹣3)=27,求出t的值,即可解答.
【详解】
解:设t=x2+y2(t≥0),则原方程转化为(4t+3)(4t﹣3)=27,
整理,得
16t2﹣1=27,
所以t2= .
∵t≥0,
∴t= .
∴x2+y2的值是.
此题考查换元法解一元二次方程,解题关键在于利用换元法解题.
16、(1)D(0,4),E(2,2),F(3,5),画图见解析;(2)(0,-4)
【解析】
(1)根据平面直角坐标系中点的坐标的平移规律求解可得;
(2)根据关于原点中心对称的规律“横纵坐标都互为相反数”即可求得.
【详解】
解:(1)如图,△DEF即为所求,
点D的坐标是,即(0,4);
点E的坐标是,即(2,2);
点F的坐标为,即(3,5);
(2)点D(0,4)关于原点中心对称的的坐标为(0,-4).
本题主要考查了平移变换以及旋转变换,正确得出对应点位置是解题关键.
17、(1)详见解析;(2)详见解析.
【解析】
(1)根据SAS即可证明.
(2)只要证明DE∥BF,DE=BF即可解决问题.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴∠A=∠C,AB=CD,
∵AE=CF,
∴△AED≌CFD.
(2)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵AE=CF,
∴ED=BF,
∵ED∥BF,
∴四边形EBFD是平行四边形
本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
18、(1);(2)点P的坐标为;(3)S△PAB=.
【解析】
(1)先确定A点坐标,然后代入反比例函数解析式,利用待定系数法求解即可;
(2)先求出B点坐标,然后找到点B关于x轴的对称点D,连接AD,交x轴于点P,则P点即为满足条件的点,利用待定系数法求出直线AD的解析式,令y=0,继而可求得点P坐标;
(3)由三角形面积公式根据S△PAB=S△ABD-S△BDP列式计算即可.
【详解】
(1)当x=1时,y=﹣x+4=3,即a= 3,
∴点A的坐标为(1,3),
将点A(1,3)代入y=中,
3=,解得:k=3,
∴反比例函数的表达式为y=;
(2)y=﹣x+4,当y= 1时,1=-x+4,x=3,即b=3,
∴点B的坐标为(3,1),
作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,如图所示,
∵点B的坐标为(3,1),
∴点D的坐标为(3,-1),
设直线AD的函数表达式为y=mx+n,
将点A(1,3)、D(3,-1)代入y=mx+n中,
,解得:,
∴直线AD的函数表达式为y=-2x+5,
当y=-2x+5=0时,,
∴点P的坐标为(,0);
(3)S△PAB=S△ABD-S△BDP=×2×2-×2×=.
本题考查的是反比例函数与一次函数综合问题,涉及了待定系数法,轴对称的性质——最值问题,三角形的面积等,弄清题意,运用数形结合思想灵活运用相关知识是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
先分母有理化,然后进行二次根式的乘法运算.
【详解】
解:原式==(2+)= .
故答案为:2+1.
本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
20、110
【解析】
延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.
【详解】
如图,延长AB交KF于点O,延长AC交GM于点P,则四边形OALP是矩形.
∵∠CBF=90°,
∴∠ABC+∠OBF=90°,
又∵直角△ABC中,∠ABC+∠ACB=90°,
∴∠OBF=∠ACB,
在△OBF和△ACB中,
,
∴△OBF≌△ACB(AAS),
∴AC=OB,
同理:△ACB≌△PGC,
∴PC=AB,
∴OA=AP,
所以,矩形AOLP是正方形,
边长AO=AB+AC=3+4=7,
所以,KL=3+7=10,LM=4+7=11,
因此,矩形KLMJ的面积为10×11=110.
本题考查勾股定理,解题的关键是读懂题意,掌握勾股定理.
21、
【解析】
分别找出分子指数规律和分母指数规律,再结合符号规律即可得出答案.
【详解】
∵,,,……,
∴第n个式子为(−1)n+1•
故答案为:(−1)n+1•.
主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律
22、6<v<2或v=4.2
【解析】
利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.
【详解】
解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).
将(0,1)、(30,300)代入y=kx+b,得:
,解得:,
∴此种情况下,y关于x的函数关系式为y=2x+1;
将(0,1)、(70,420)代入y=kx+b,得:
,解得:,
∴此种情况下,y关于x的函数关系式为y=6x+1;
将(0,1)、(50,300)代入y=kx+b,得:
,解得:,
∴此种情况下,y关于x的函数关系式为y=4.2x+1.
观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<2或v=4.2.
故答案为6<v<2或v=4.2
本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.
23、1
【解析】
过点C作CF⊥AB于F,由角平分线的性质得CD=CF,CE=CF,于是可证△ADC≌△AFC,△CBE≌△CBF,可得AD=AF,BE=BF,即可得结论.
【详解】
解:如图,过点C作CF⊥AB于F,
∵AC,BC分别平分∠BAD,∠ABE,
∴CD=CF,CE=CF,
∵AC=AC,BC=BC,
∴△ADC≌△AFC,△CBE≌△CBF,
∴AF=AD=5,BF=BE=2,
∴AB=AF+BF=1.
故答案是:1.
本题考查全等三角形的判定和性质,角平分线的性质,添加恰当辅助线构造全等三角形是本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)①(2,6);②点(2,6)
【解析】
(1)将代入,求得a的值,然后再确定与x轴的另一交点.
(2)①整理,使a的系数为0,从而确定x,进而确定y,即可确定定点.
②先确定顶点坐标,继而根据二次函数的性质进行说明即可.
【详解】
解:(1)代入得,
∴,
∴,
∴另一交点为.
(2)①整理得 ,
令代入,得:,
故定点为,
②∵,
∴顶点为,
又∵,
∴时纵坐标有最大值6,
∴顶点坐标为是所有顶点中纵坐标最大的点.
本题考查了二次函数图像的性质及整式的变形,其中根据需要对整式进行变形是解答本题的关键.
25、 (1);(2)8-
【解析】
(1)根据二次根式的混合运算法则进行计算即可.
(2)利用完全平方公式和平方差公式进行计算即可.
【详解】
(1)原式=3++2﹣
=3+2+
=;
(2)原式=2﹣1+3﹣4+4
=8﹣4.
此题考查二次根式的混合运算,解题关键在于利用平方差公式和完全平方公式进行计算.
26、(1)见解析;(2)∠APB=120°.
【解析】
(1)由△ACP∽△PDB,根据相似三角形的对应边成比例,可得AC:PD=PC:BD,又由△PCD是等边三角形,即可证得CD2=AC•BD;
(2)由△ACP∽△PDB,根据相似三角形对应角相等,可得∠A=∠BPD,又由△PCD是等边三角形,即可求得∠APB的度数.
【详解】
(1)证明:∵△ACP∽△PDB,
∴AC:PD=PC:BD,
∴PD•PC=AC•BD,
∵△PCD是等边三角形,
∴PC=CD=PD,
∴CD2=AC•BD;
(2)解:∵△ACP∽△PDB,
∴∠A=∠BPD,
∵△PCD是等边三角形,
∴∠PCD=∠CPD=60°,
∴∠PCD=∠A+∠APC=60°,
∴∠APC+∠BPD=60°,
∴∠APB=∠APC+∠CPD+∠BPD=120°.
此题考查了相似三角形的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想的应用.
题号
一
二
三
四
五
总分
得分
型号
22
22.5
23
23.5
24
24.5
25
数量(双)
2
6
11
15
7
3
4
相关试卷
这是一份2024-2025学年河南省郑州市金水区金水区为民中学数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省郑州市金水区为民中学2023-2024学年九年级数学第一学期期末联考试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知抛物线,则下列说法正确的是,已知方程的两根为,则的值是等内容,欢迎下载使用。
这是一份河南省郑州市金水区金水区为民中学2023-2024学年数学九上期末统考试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。