终身会员
搜索
    上传资料 赚现金

    2025届河南省郑州市外国语中学九年级数学第一学期开学统考试题【含答案】

    立即下载
    加入资料篮
    2025届河南省郑州市外国语中学九年级数学第一学期开学统考试题【含答案】第1页
    2025届河南省郑州市外国语中学九年级数学第一学期开学统考试题【含答案】第2页
    2025届河南省郑州市外国语中学九年级数学第一学期开学统考试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届河南省郑州市外国语中学九年级数学第一学期开学统考试题【含答案】

    展开

    这是一份2025届河南省郑州市外国语中学九年级数学第一学期开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列根式不是最简二次根式的是( )
    A.B.C.D.
    2、(4分)如图,在▱ABCD中,AC⊥BD于点O,点E为BC中点,连接OE,OE=,则▱ABCD的周长为( )
    A.4B.6C.8D.12
    3、(4分)若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )
    A.B.1C.D.
    4、(4分)估算在哪两个整数之间( )
    A.0和1B.1和2C.2和3D.3和4
    5、(4分)已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为( )
    A.7B.8C.6或8D.7或8
    6、(4分)为了了解中学课堂教学质量,我市教体局去年对全市中学教学质量进行调查方法是通过考试参加考试的为全市八年级学生,从中随机抽取600名学生的英语成绩进行分析对于这次调查,以下说法不正确的是( )
    A.调查方法是抽样调查B.全市八年级学生是总体
    C.参加考试的每个学生的英语成绩是个体D.被抽到的600名学生的英语成绩是样本
    7、(4分)使有意义的取值范围是( )
    A.B.C.D.
    8、(4分)矩形ABCD中,已知AB=5,AD=12,则AC长为( )
    A.9B.13C.17D.20
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.
    10、(4分)对于一个函数,如果它的自变量 x 与函数值 y 满足:当−1≤x≤1 时,−1≤y≤1,则称这个函数为“闭 函数”.例如:y=x,y=−x 均是“闭函数”. 已知 y  ax2 bx  c(a0) 是“闭函数”,且抛物线经过点 A(1,−1)和点 B(−1,1),则 a 的取值范围是______________.
    11、(4分)如图,在直角坐标系中,A、B两点的坐标分别为(0,8)和(6,0),将一根橡皮筋两端固定在A、B两点处,然后用手勾住橡皮筋向右上方拉升,使橡皮筋与坐标轴围成一个矩形AOBC,则橡皮筋被拉长了_____个单位长度.
    12、(4分)若正多边形的一个外角等于36°,那么这个正多边形的边数是________.
    13、(4分)在平面直角坐标系中,点关于轴对称的点的坐标是__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图 1,在正方形 ABCD 中, P 是对角线 AC 上的一点,点 E 在 BC 的延长线上,且PE  PB .
    (1)求证: △BCP≌△DCP ;
    (1)求证: DPE  ABC ;
    (3)把正方形 ABCD 改为菱形 ABCD ,且 ABC  60 ,其他条件不变,如图 1.连接 DE , 试探究线段 BP 与线段 DE 的数量关系,并说明理由.
    15、(8分)已知,如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.
    (1)求证:四边形ADCF是平行四边形;
    (2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.
    16、(8分)有两个不透明的袋子分别装有红、白两种颜色的球(除颜色不同外其余均相同),甲袋中有2个红球和1个白球,乙袋中有1个红球和3个白球.
    (1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是______.
    (2)如果在乙袋中随机摸出两个小球,那么摸到两球颜色相同的概率是______.
    (3)如果在甲、乙两个袋子中分别随机摸出一个小球,那么摸到两球颜色相同的概率是多少?(请用列表法或树状图法说明)
    17、(10分)为了满足学生的物质需求,我市某中学到红旗超市准备购进甲、乙两种绿色袋装食品.其中甲、乙两种绿色袋装食品的进价和售价如下表:
    已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.
    (1)求的值;
    (2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价-进价)不少于5200元,且不超5280元,问该红旗超市有几种进货方案?
    (3)在(2)的条件下,该红旗超市准备对甲种袋装食品进行优惠促销活动,决定对甲种袋装食品每袋优惠元出售,乙种袋装食品价格不变.那么该红旗超市要获得最大利润应如何进货?
    18、(10分)如图,在正方形ABCD中,对角线AC,BD相较于点O,的角平分线BF交CD于点E,交AC于点F
    求证:;
    若,求AB的值
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是_____.
    20、(4分)如图,等腰直角三角形ABC的底边长为6,AB⊥BC;等腰直角三角形CDE的腰长为2,CD⊥ED;连接AE,F为AE中点,连接FB,G为FB上一动点,则GA的最小值为____.
    21、(4分)如图,在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点B(6,2),C(4,0),直线y=2x+1以每秒1个单位长度的速度沿y轴向下平移,经过______秒该直线可将平行四边形OABC分成面积相等的两部分.
    22、(4分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A= °.
    23、(4分)在平行四边形ABCD中,若∠A+∠C=140°,则∠B= .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图①,在平面直角坐标系中,直线:分别与轴、轴交于点、,且与直线:交于点,以线段为边在直线的下方作正方形,此时点恰好落在轴上.
    (1)求出三点的坐标.
    (2)求直线的函数表达式.
    (3)在(2)的条件下,点是射线上的一个动点,在平面内是否存在点,使得以、、、为顶点的四边形是菱形?若存在,直接写出点的坐标;若不存在,请说明理由.
    25、(10分)一个多边形的内角和比它的外角和的2倍还大180度,求这个多边形的边数.
    26、(12分)先化简再求值:,再从0,﹣1,2中选一个数作为a的值代入求值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式)是否同时满足,同时满足的就是最简二次根式,否则就不是.
    【详解】A. ,是最简二次根式,不符合题意;
    B. ,是最简二次根式,不符合题意;
    C. ,不是最简二次根式,符合题意;
    D. ,是最简二次根式,不符合题意,
    故选C.
    【点睛】本题考查了最简二次根式,规律总结:满足下列两个条件的二次根式,叫做最简二次根式.
    (1)被开方数不含分母;
    (2)被开方数中不含能开得尽方的因数或因式.
    2、C
    【解析】
    在▱ABCD中,AC⊥BD于点O,∴▱ABCD为菱形,则其四边相等,Rt△BOC中,点E为斜边BC中点,∴OE=BE=EC=,从而可求▱ABCD的周长
    【详解】
    解:∵AC⊥BD,
    ∴▱ABCD为菱形,则其四边相等
    且点E为斜边BC中点,
    ∴OE=BE=EC=,
    ∴BC=2,
    ∴▱ABCD的周长=4BC=8
    故选:C.
    本题主要考查平行四边形的性质,熟练掌握平行四边形的性质是解答本题的关键.
    3、A
    【解析】
    【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.
    【详解】x(x+1)+ax=0,
    x2+(a+1)x=0,
    由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,
    解得:a1=a2=-1,
    故选A.
    【点睛】本题考查一元二次方程根的情况与判别式△的关系:
    (1)△>0⇔方程有两个不相等的实数根;
    (2)△=0⇔方程有两个相等的实数根;
    (3)△<0⇔方程没有实数根.
    4、C
    【解析】
    原式化简后,估算即可确定出范围.
    【详解】
    解:原式=﹣+1=+1,
    ∵,
    ∴,即,
    则2﹣+1在2和3两个整数之间,
    故选:C.
    本题考查了无理数的估算,能够正确化简,并熟知是解题的关键.
    5、D
    【解析】
    因为等腰三角形的两边分别为2和3,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.
    【详解】
    当2为底时,三角形的三边为3,2、3可以构成三角形,周长为8;
    当3为底时,三角形的三边为3,2、2可以构成三角形,周长为1.
    故选D.
    本题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.
    6、B
    【解析】
    根据全面调查与抽样调查的定义,总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,对各选项分析后利用排除法求解.
    【详解】
    、调查方法是抽样调查,正确;
    、全市八年级学生的英语成绩是总体,错误;
    、参加考试的每个学生的英语成绩是个体,正确;
    、被抽到的600名学生的英语成绩是样本,正确.
    故选:.
    此题考查了总体、个体、样本、样本容量.解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考察对象是相同的,所不同的是范围的大小,样本容量是样本中包含的个体的数目,不能带单位.
    7、C
    【解析】
    根据二次根式的非负性可得,解得:
    【详解】
    解:∵使有意义,

    解得
    故选C
    本题考查二次根式有意义的条件,熟练掌握二次根式的非负性为解题关键
    8、B
    【解析】
    由勾股定理可求出BD长,由矩形的性质可得AC=BD=1.
    【详解】
    如图,矩形ABCD中,∠BAD=90°,AB=5,AD=12,∴1,∴AC=BD=1.
    故选B.
    本题考查了矩形的性质,勾股定理,求出DB的长是解答本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2
    【解析】
    解:这组数据的平均数为2,
    有 (2+2+0-2+x+2)=2,
    可求得x=2.
    将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,
    其平均数即中位数是(2+2)÷2=2.
    故答案是:2.
    10、或
    【解析】
    分析:分别把点A、B代入函数的解析式,求出a、b、c的关系,然后根据抛物线的对称轴x=,然后结合图像判断即可.
    详解:∵y  ax2 bx  c(a0)经过点 A(1,−1)和点 B(−1,1)
    ∴a+b+c=-1,a-b+c=1
    ∴a+c=0,b=-1
    则抛物线为:y  ax2 bx –a
    ∴对称轴为x=
    ①当a<0时,抛物线开口向下,且x=<0,如图可知,当≤-1时符合题意,所以;当-1<<0时,图像不符合-1≤y≤1的要求,舍去;
    ②当a>0时,抛物线的开口向上,且x=>0,由图可知≥1时符合题意,∴0<a≤;当0<<1时,图像不符合-1≤y≤1的要求,舍去.
    综上所述,a的取值范围是:或.
    故答案为或.
    点睛:本题考查的是二次函数的性质,在解答此题时要注意进行分类讨论,不要漏解.
    11、1
    【解析】
    根据已知条件得到OA=8,OB=6,根据勾股定理得到,根据矩形的性质即可得到结论.
    【详解】
    解:∵A、B两点的坐标分别为(0,8)和(6,0),
    ∴OA=8,OB=6,
    ∴,
    ∵四边形AOBC是矩形,
    ∴AC+BC=OB+OA=11,
    ∴11﹣10=1,
    ∴橡皮筋被拉长了1个单位长度,
    故答案为:1.
    本题考查了矩形的性质,坐标与图形性质,熟练掌握矩形的性质是解题的关键.
    12、十
    【解析】
    根据正多边形的外角和为360°,除以每个外角的度数即可知.
    【详解】
    解:∵正多边形的外角和为360°,
    ∴正多边形的边数为,
    故答案为:十.
    本题考查了正多边形的外角与边数的关系,解题的关键是熟知正多边形外角和等于每个外角的度数与边数的乘积.
    13、
    【解析】
    根据关于x轴对称的两点,横坐标相同,纵坐标互为相反数解答即可.
    【详解】
    点关于轴对称的点的坐标是.
    故答案为:.
    本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(1)见解析;(3)BP=DE,理由见解析.
    【解析】
    (1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可;
    (1)根据(1)的结论可得∠CBP=∠CDP,根据PE  PB可得∠CBP=∠E,于是∠CDP=∠E,再由∠1=∠1可进一步推得∠DPE=∠DCE,最后由AB∥CD,可得∠DCE=∠ABC,从而结论得证;
    (3)BP =DE. 由(1)的结论可得PD=PB=PE,由(1)的结论可知∠DPE=∠ABC=60°,进一步可推得△PDE是等边三角形,则DE=PE=PB,即得结论.
    【详解】
    (1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,
    在△BCP和△DCP中,
    ∵ ,
    ∴△BCP≌△DCP(SAS);
    (1)证明:如图,由(1)知,△BCP≌△DCP,
    ∴∠CBP=∠CDP,
    ∵PE=PB,
    ∴∠CBP=∠E,
    ∴∠CDP=∠E,
    ∵∠1=∠1,
    ∴180°﹣∠1﹣∠CDP=180°﹣∠1﹣∠E,
    即∠DPE=∠DCE,
    ∵AB∥CD,
    ∴∠DCE=∠ABC,
    ∴∠DPE=∠ABC;
    (3)BP=DE,理由如下:
    由(1)知,△BCP≌△DCP,所以PD=PB=PE,
    由(1)知,∠DPE=∠ABC=60°,
    ∴△PDE是等边三角形,
    ∴DE=PE=PB,
    ∴DE=PB.
    本题考查了正方形的性质、全等三角形的判定与性质、菱形的性质、等腰三角形的性质和等边三角形的判定与性质,其中第(1)小题中的“蝴蝶型”三角形是证明两个角相等常用的模型,是解题的关键;而第(3)小题则充分利用了(1)(1)两个小题的结论,体现了整道题在方法和结论上的连续性.
    15、(1)证明见解析,(2)当AB=AC时,四边形ADCF为矩形,理由见解析.
    【解析】
    (1)可证△AFE≌△DBE,得出AF=BD,进而根据AF=DC,得出D是BC中点的结论;
    (2)若AB=AC,则△ABC是等腰三角形,根据等腰三角形三线合一的性质知AD⊥BC;而AF与DC平行且相等,故四边形ADCF是平行四边形,又AD⊥BC,则四边形ADCF是矩形.
    【详解】
    解:(1)证明:∵E是AD的中点,
    ∴AE=DE.
    ∵AF∥BC,
    ∴∠FAE=∠BDE,∠AFE=∠DBE.
    在△AFE和△DBE中,,
    ∴△AFE≌△DBE(AAS).
    ∴AF=BD.
    ∵AF=DC,
    ∴BD=DC.
    即:D是BC的中点.
    (2)AB=AC,理由如下:
    ∵AF=DC,AF∥DC,
    ∴四边形ADCF是平行四边形.
    ∵AB=AC,BD=DC,
    ∴AD⊥BC即∠ADC=90°.
    ∴平行四边形ADCF是矩形.
    考点:全等三角形的判定与性质;矩形的判定.
    16、(1);(2);(3)摸到的两球颜色相同的概率
    【解析】
    (1)直接利用概率公式计算;
    (2)利用完全列举法展示6种等可能的结果数,然后根据概率公式求解;
    (3)画树状图展示所有12种等可能的结果数,找出摸到两球颜色相同的结果数,然后根据概率公式求解.
    【详解】
    (1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是.
    (2)如果在乙袋中随机摸出两个小球,则有红白、红白、红白、白白、白白、白白共6种等可能的结果数,其中摸到两球颜色相同的概率=.
    (3)画树状图为:
    共有12种等可能的结果数,其中摸到两球颜色相同的结果数为5,
    所以摸到两球颜色相同的概率.
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
    17、(1);(2)共有17种方案;(3)当时,有最大值,即此时应购进甲种绿色袋装食品240袋,表示出乙种绿色袋装食品560袋.
    【解析】
    (1)根据“用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同”列出方程并解答;
    (2)设购进甲种绿色袋装食品x袋,表示出乙种绿色袋装食品(800-x)袋,然后根据总利润列出一元一次不等式组解答;
    (3)设总利润为W,根据总利润等于两种绿色袋装食品的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.
    【详解】
    解:(1)依题意得:
    解得:,
    经检验是原分式方程的解;
    (2)设购进甲种绿色袋装食品袋,表示出乙种绿色袋装食品袋,根据题意得,
    解得:,
    ∵是正整数,,
    ∴共有17种方案;
    (3)设总利润为,则,
    ①当时,,随的增大而增大,
    所以,当时,有最大值,
    即此时应购进甲种绿色袋装食品256袋,乙种绿色袋装食品544袋;
    ②当时,,(2)中所有方案获利都一样;
    ③当时,,随的增大而减小,
    所以,当时,有最大值,
    即此时应购进甲种绿色袋装食品240袋,表示出乙种绿色袋装食品560袋.
    本题考查了分式方程与一元一次不等式组的综合应用。
    18、(1)详见解析;(2).
    【解析】
    根据正方形的性质得到,由角平分线的定义得到,求得,于是得到结论;
    如图作交BD于点首先证明是等腰直角三角形,推出,求出OB即可解决问题.
    【详解】
    证明:,BD是正方形的对角线,

    平分,

    ,,


    解解:如图,作交BD于点H.
    四边形ABCD是正方形,
    ,,

    ,,

    ,,
    平分,




    本题考查正方形的性质,角平分线的定义,勾股定理,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、.
    【解析】
    分析:
    根据“反比例函数的图象所处象限与的关系”进行解答即可.
    详解:
    ∵反比例函数的图象在第一、三象限内,
    ∴,解得:.
    故答案为.
    点睛:熟记“反比例函数的图象所处象限与的关系:(1)当时,反比例函数的图象在第一、三象限;(2)当时,反比例函数的图象在第二、四象限.”是正确解答本题的关键.
    20、3.
    【解析】
    运用等腰直角过三角形角的性质,逐步推导出AC⊥EC,当AG⊥BF时AG最小,最后运用平行线等分线段定理,即可求解.
    【详解】
    解:∵等腰直角三角形ABC,等腰直角三角形CDE
    ∴∠ECD=45°,∠ACB=45°
    即AC⊥EC,且CE∥BF
    当AG⊥BF,时AG最小,
    所以由∵AF=AE
    ∴AG=CG=AC=3
    故答案为3
    本题考查了等腰直角三角形三角形的性质和平行线等分线段定理,其中灵活应用三角形中位线定理是解答本题的关键.
    21、1
    【解析】
    首先连接AC、BO,交于点D,当y=2x+1经过D点时,该直线可将▱OABC的面积平分,然后计算出过D且平行直线y=2x+1的直线解析式y=2x-5,从而可得直线y=2x+1要向下平移1个单位,进而可得答案.
    【详解】
    连接AC、BO,交于点D,当y=2x+1经过D点时,该直线可将□OABC的面积平分;
    ∵四边形AOCB是平行四边形,
    ∴BD=OD,
    ∵B(1,2),点C(4,0),
    ∴D(3,1),
    设DE的解析式为y=kx+b,
    ∵平行于y=2x+1,
    ∴k=2,
    ∵过D(3,1),
    ∴DE的解析式为y=2x-5,
    ∴直线y=2x+1要向下平移1个单位,
    ∴时间为1秒,
    故答案为1.
    此题主要考查了平行四边形的性质,以及一次函数,掌握经过平行四边形对角线交点的直线平分平行四边形的面积是解题的关键.
    22、55.
    【解析】
    试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C
    ∴∠ACA’=35°,∠A =∠A’,.
    ∵∠A’DC=90°,
    ∴∠A’ =55°.
    ∴∠A=55°.
    考点:1.旋转的性质;2.直角三角形两锐角的关系.
    23、110°
    【解析】
    试题解析:∵平行四边形ABCD,
    ∴∠A+∠B=180°,∠A=∠C,
    ∵∠A+∠C=140°,
    ∴∠A=∠C=70°,
    ∴∠B=110°.
    考点:平行四边形的性质.
    二、解答题(本大题共3个小题,共30分)
    24、(1),,;(2);(3)存在,,,.
    【解析】
    (1)利用一次函数图象上点的坐标特征可求出点B,C的坐标,联立直线l1,l2的解析式成方程组,通过解方程组可求出点A的坐标;
    (2)过点A作AF⊥y轴,垂足为点F,则△ACF≌△CDO,利用全等三角形的性质可求出点D的坐标,根据点C,D的坐标,利用待定系数法即可求出直线CD的解析式;
    (3)分OC为对角线及OC为边两种情况考虑:①若OC为对角线,由菱形的性质可求出点P的纵坐标,再利用一次函数图象上点的坐标特征可求出点P1的坐标;②若OC为边,设点P的坐标为(m,2m+6),分CP=CO和OP=OC两种情况,利用两点间的距离公式可得出关于m的方程,解之取其负值,再将其代入点P的坐标中即可得出点P2,P3的坐标.
    【详解】
    (1)∵直线:,
    ∴当时,;当时,,
    ∴,,
    解方程组:得:,
    ∴点的坐标为;
    (2)如图1,作,则,
    ∵四边形为正方形,
    ∴,
    ∵,,
    ∴,

    ∴,
    ∴,
    ∵,,
    ∴,

    设直线的解析式为,
    将、代入得:,
    解得:,
    ∴直线的解析式为
    (3)存在
    ①以为对角线时,如图2所示,
    则PQ垂直平分CO,
    则点P的纵坐标为:,
    当y=3时,,解得:x=
    ∴点;
    ②以为边时,如图2,设点P(m,2m+6),
    当CP=CO时,,
    解得:(舍去)
    ∴,
    当OP=OC时,,
    解得:(舍去)

    综上所述,在平面内是否存在点,使得以、、、为顶点的四边形是菱形,,,.
    本题考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、待定系数法求一次函数解析式、菱形的性质以及两点间的距离,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A,B,C的坐标;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)分OC为对角线及OC为边两种情况,利用菱形的性质求出点P的坐标.
    25、这个多边形的边数是1.
    【解析】
    试题分析:设这个多边形的边数为n,根据多边形的内角和公式(n﹣2)•180°与外角和定理列出方程,求解即可.
    试题解析:设这个多边形的边数为n,
    根据题意,得(n﹣2)×180°=2×360°+180°,
    解得n=1.
    故这个多边形的边数是1.
    26、.
    【解析】
    首先将分式进行化简,特别注意代入计算的数,不能使分式的分母为0.
    【详解】
    解:原式=

    = ,
    ∵a≠0,a2﹣1≠0,a2+a≠0,
    即a≠0,且a≠±1,
    ∴取a=2,
    原式=.
    本题主要考查分式化简求值,注意分式的分母不能为0
    题号





    总分
    得分
    批阅人


    进价(元/袋)
    售价(元/袋)
    20
    13

    相关试卷

    2025届河南省郑州市登封市九上数学开学统考模拟试题【含答案】:

    这是一份2025届河南省郑州市登封市九上数学开学统考模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年河南省郑州市河南省实验中学数学九年级第一学期开学联考试题【含答案】:

    这是一份2024年河南省郑州市河南省实验中学数学九年级第一学期开学联考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年河南省郑州市郑州外国语数学九上开学经典模拟试题【含答案】:

    这是一份2024-2025学年河南省郑州市郑州外国语数学九上开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map