2025届河南省郑州市郑州一八联合国际学校九年级数学第一学期开学复习检测模拟试题【含答案】
展开这是一份2025届河南省郑州市郑州一八联合国际学校九年级数学第一学期开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有( )
A.2条B.4条C.5条D.6条
2、(4分)分式方程的解为( )
A.x=-2B.x=-3C.x=2D.x=3
3、(4分)要使代数式有意义,则的取值范围是
A.B.C.D.
4、(4分)要使分式有意义,则x的取值范围是( )
A.B.C.D.
5、(4分)用反证法证明“”,应假设( )
A.B.C.D.
6、(4分)要使矩形ABCD为正方形,需要添加的条件是( )
A.AB=BCB.AD=BCC.AB=CDD.AC=BD
7、(4分)如图,已知正比例函数与一次函数的图象交于点.下面有四个结论:①;②;③当时,;④当时,.其中正确的是()
A.①②B.②④C.③④D.①③
8、(4分)菱形的对角线长分别是,则这个菱形的面积是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系内,直线l⊥y轴于点C(C在y轴的正半轴上),与直线y=相交于点A,和双曲线y=交于点B,且AB=6,则点B的坐标是______.
10、(4分)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是__.
11、(4分)如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为_____________.
12、(4分)如图,A、B、C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为D,则∠EBC的度数为_____.
13、(4分)如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=a,则AB=2a,它的根据是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在中,,,动点以每秒1个单位的速度从点出发运动到点,点以相同的速度从点出发运动到点,两点同时出发,过点作交直线于点,连接、,设运动时间为秒.
(1)当和时,请你分别在备用图1,备用图2中画出符合题意的图形;
(2)当点在线段上时,求为何值时,以、、、为顶点的四边形是平行四边形;
(3)当点在线段的延长线上时,是否存在某一时刻使,若存在,请求出的值;若不存在,请说明理由.
15、(8分)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.
(1)求证:△BGF≌△FHC;
(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.
16、(8分)在如图平面直角坐标系中,直线l分别交x轴、y轴于点A(3,0)、B(0,4)两点,动点P从点O开始沿OA向点A以每秒个单位长度运动,动点Q从点B开始沿BO向点O以每秒个单位长度运动,过点P作y轴的平行线交直线AB于点M,连接PQ.且点P、Q分别从点O、B同时出发,运动时间为t秒.
(1)请直接写出直线AB的函数解析式: ;
(2)当t=4时,四边形BQPM是否为菱形?若是,请说明理由;若不是,请求出当t为何值时,四边形BQPM是菱形.
17、(10分)如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.
(1)求证:△ABD≌△FBC;
(1)如图(1),求证:AM1+MF1=AF1.
18、(10分)某网络约车公司近期推出了“520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(千米),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图.
根据以上信息,解答下列问题:
(1)表中a= ,样本中“单次营运里程”不超过15千米的频率为 ;
(2)请把频数分布直方图补充完整;
(3)估计该公司5000个“单次营运里程”超过20千米的次数.(写出解答过程)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是_____.
20、(4分)约分___________.
21、(4分)如果直线l与直线y=﹣2x+1平行,与直线y=﹣x+2的交点纵坐标为1,那么直线l的函数解析式为__.
22、(4分)(2016浙江省衢州市)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=____________.
23、(4分)一次函数的图象不经过__________象限
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
(1)求证:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.
25、(10分)如图,在四边形ABCD中,AD∥BC,CA平分∠DCB,DB平分∠ADC
(1)求证:四边形ABCD是菱形;
(2)若AC=8,BD=6,求点D到AB的距离
26、(12分)按指定的方法解下列一元二次方程:
(1)(配方法) (2)(公式法)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,再证得△ABO是等边三角形,推出AB=AO=8=DC,由此即可解答.
【详解】
∵AC=16,四边形ABCD是矩形,
∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,
∴BO=OD=AO=OC=8,
∵∠AOD=120°,
∴∠AOB=60°,
∴△ABO是等边三角形,
∴AB=AO=8,
∴DC=8,
即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,
故选D.
本题考查了矩形性质和等边三角形的性质和判定的应用,矩形的对角线互相平分且相等,矩形的对边相等.
2、B
【解析】
解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B.
3、C
【解析】
根据二次根式的被开方数非负得到关于x的不等式,解不等式即得答案.
【详解】
解:根据题意,得,解得,.
故选C.
本题考查了二次根式有意义的条件,熟知二次根式被开方数非负是解题的关键.
4、A
【解析】
根据分式分母不为0的条件进行求解即可.
【详解】
由题意得
x-1≠0,
解得:x≠1,
故选A.
5、D
【解析】
根据命题:“a>0”的反面是:“a≤0”,可得假设内容.
【详解】
解:由于命题:“a>0”的反面是:“a≤0”,
故用反证法证明:“a>0”,应假设“a≤0”,
故选:D.
此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.
6、A
【解析】
根据有一组邻边相等的矩形是正方形即可解答.
【详解】
∵四边形ABCD是矩形,
∴要使矩形ABCD成为一个正方形,需要添加一个条件,这个条件可以是:AB=BC或AC⊥BD.
故选:A.
本题考查了正方形的判定,解答此题的关键是熟练掌握正方形的判定定理,正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.
7、D
【解析】
利用两函数图象结合与坐标轴交点进而分别分析得出答案.
【详解】
如图所示:
∵y1=ax,经过第一、三象限,
∴a>0,故①正确;
∵与y轴交在正半轴,
∴b>0,
故②错误;
∵正比例函数y1=ax,经过原点,
∴当x<0时,函数图像位于x轴下方,∴y1<0;故③正确;
当x>2时,y1>y2,故④错误.
故选:D.
此题考查一次函数与一元一次不等式,正确利用数形结合分析是解题关键.
8、B
【解析】
根据菱形的面积公式:菱形面积=ab(a、b是两条对角线的长度)可得到答案.
【详解】
菱形的面积:
故选:B.
此题主要考查了菱形的面积公式,关键是熟练掌握面积公式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(3+,)或(-3+,)
【解析】
根据直线l⊥y轴,可知AB∥x轴,则A、B的纵坐标相等,设A(m,m)(m>0),列方程 ,可得点B的坐标,根据AB=6,列关于m的方程可得结论.
【详解】
如图,
设A(m,m)(m>0),如图所示,
∴点B的纵坐标为m,
∵点B在双曲线y=上,
∴,
∴x=,
∵AB=6,
即|m-|=6,
∴m-=6或-m=6,
∴m1=3+或m2=3-<0(舍),m3=-3-(舍),m4=-3+,
∴B(3+,)或(-3+,),
故答案为:(3+,)或(-3+,).
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
10、
【解析】
试题分析:首先设点P的坐标为(x,y),根据矩形的周长可得:2(x+y)=10,则y=-x+5,即该直线的函数解析式为y=-x+5.
11、 (2,1)
【解析】
【分析】直接运用线段中点坐标的求法,易求N的坐标.
【详解】点N的坐标是:(),即(2,1).
故答案为:(2,1)
【点睛】本题考核知识点:平面直角坐标系中求线段的中点. 解题关键点:理解线段中点的坐标求法.
12、100°
【解析】
根据线段垂直平分线的性质,得根据等腰三角形的性质,得再根据三角形外角的性质即可求解.
【详解】
∵BD垂直平分AE,
∴
∴
∴
故答案为100°.
考查线段垂直平分线的性质以及三角形外角的性质,掌握线段垂直平分线的性质是解题的关键.
13、三角形的中位线等于第三边的一半
【解析】
∵D,E分别是AC,BC的中点,
∴DE是△ABC的中位线,
∴DE=AB,
设DE=a,则AB=2a,
故答案是:三角形的中位线等于第三边的一半.
三、解答题(本大题共5个小题,共48分)
14、 (1)见解析;(2)当时,以为顶点的四边形是平行四边形 ;(3)时,.
【解析】
(1)根据AM=t1可得,再根据题意过点过点作交直线于点,连接、即可;
(2) 过作于,先证明四边形AMPE是平行四边形,从而得到AM=PE,在Rt△ADE中法求得DE=2,再求出PC=2-t,根据要使以为顶点的四边形是平行四边形则AM=PC,得到关于t的方程,解方程即可;
(3) 当在线段延长线上时,可得,,,再根据得到关于t的方程,解方程即可.
【详解】
(1)如备用图1、2所示;
(2)若点在线段上时,过作于,如图
∵
∴
又在平行四边形中,,即
∴四边形是平行四边形 ,
∴
由运动可知
∴ ,
在中
∴,
,
要使四边形为平行四边形,则只需 ,
即,解得,,
当时,以为顶点的四边形是平行四边形;
(3)当在线段延长线上时,假设时,如图
易知,
,,
∵,
∴,
∴,
解得,
故时,.
考查了平行四边形的动点问题,解题关键是灵活运用勾股定理、平行四边形的性质等知识,认真分析题意.
15、见解析(2)
【解析】
(1)根据三角形中位线定理和全等三角形的判定证明即可;
(2)利用正方形的性质和矩形的面积公式解答即可.
【详解】
(1)连接EF,∵点F,G,H分别是BC,BE,CE的中点,
∴FH∥BE,FH=BE,FH=BG,
∴∠CFH=∠CBG,
∵BF=CF,
∴△BGF≌△FHC,
(2)当四边形EGFH是正方形时,连接GH,可得:EF⊥GH且EF=GH,
∵在△BEC中,点G,H分别是BE,CE的中点,
∴ 且GH∥BC,
∴EF⊥BC,
∵AD∥BC,AB⊥BC,
∴AB=EF=GH=a,
∴矩形ABCD的面积=
此题考查正方形的性质,关键是根据全等三角形的判定和正方形的性质解答.
16、(1);(2)当t=4时,四边形BQPM是菱形.
【解析】
(1)由点A、B的坐标,利用待定系数法求得直线AB的函数解析式;
(2)当t=4时,求得BQ、OP的长度,结合勾股定理得到PQ=BQ;由相似三角形:△APM∽△AOB的对应边相等求得PM的长度,得到BQ=PM,所以该四边形是平行四边形,所以根据“邻边相等的平行四边形为菱形”推知当t=4时,四边形BQPM是菱形.
【详解】
解:(1)设直线AB的解析式为:y=kx+b(k≠0).
把点A(1,0)、B(0,4)分别代入,得
解得.
故直线AB的函数解析式是:y=﹣x+1.
故答案是:y=﹣x+1.
(2)当t=4时,四边形BQPM是菱形.理由如下:
当t=4时,BQ=,则OQ=.
当t=4时,OP=,则AP=.
由勾股定理求得PQ=.
∵PM∥OB,
∴△APM∽△AOB,
∴,即,
解得PM=.
∴四边形BQPM是平行四边形,
∴当t=4时,四边形BQPM是菱形.
考查了一次函数综合题,熟练掌握待定系数法求一次函数解析式,菱形的判定与性质,勾股定理,相似三角形的判定与性质,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目.
17、(1)证明见详解;(1)证明见详解
【解析】
(1)根据四边形ABFG、BCED是正方形得到两对边相等,一对直角相等,根据图形利用等式的性质得到一对角相等,利用SAS即可得到三角形全等;
(1)根据全等三角形的性质和勾股定理即可得到结论.
【详解】
解:(1)∵四边形ABFG、BCED是正方形,
∴AB=FB,CB=DB,∠ABF=∠CBD=90°,
∴∠ABF+∠ABC=∠CBD+∠ABC,
即∠ABD=∠CBF,
在△ABD和△FBC中,
,
∴△ABD≌△FBC(SAS);
(1)∵△ABD≌△FBC,
∴∠BAD=∠BFC,
∴∠AMF=180°-∠BAD-∠CNA=180°-(∠BFC+∠BNF)=180°-90°=90°,
∴AM1+MF1=AF1.
此题考查了全等三角形的判定与性质,正方形的性质,勾股定理,熟练掌握全等三角形的判定定理是解题的关键.
18、 (1)48,0.1;(2)见解析;(3)750次.
【解析】
(1)①由各组频数之和等于数据总数200可得出a的值;用第一、二、三组的频数和除以200可得;
(2)根据频数分布表中的数据可把频数分布直方图补充完整;
(3)用5000乘以样本中“单次营运里程”超过20公里的次数所占比例即可得.
【详解】
(1)a=200-(72+26+24+30)=48;
样本中“单次营运里程”不超过15公里的频率为
=0.1.
故答案为48,0.1;
(2)补全图形如下:
(3)5000×=750(次).
答:该公司这5000个“单次营运里程”超过20公里的次数约为750次.
本题考查读频数分布直方图的能力和利用统计表获取信息的能力;利用统计表获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x<1
【解析】
观察函数图象得到当x<1时,函数y=kx+6的图象都在y=x+b的图象上方,所以关于x的不等式kx+6>x+b的解集为x<1.
【详解】
由图象可知,当x<1时,有kx+6>x+b,
当x>1时,有kx+6<x+b,
所以,填x<1
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
20、
【解析】
根据分式的性质,分子分母同时扩大或缩小相同倍数时分式的值不变即可解题.
【详解】
=,(分子分母同时除以6abc).
本题考查了分式的变形和化简,属于简单题,熟悉分式的性质是解题关键.
21、答案为:y=﹣2x+3.
【解析】【分析】设直线l的函数解析式为y=kx+b,先由平行关系求k,再根据交点求出b.
【详解】设直线l的函数解析式为y=kx+b,
因为,直线l与直线y=﹣2x+1平行,
所以,y=﹣2x+b,
因为,与直线y=﹣x+2的交点纵坐标为1,
所以,1=﹣x+2,x=1
所以,把(1,1)代入y=-2x+b,解得b=3.
所以,直线l的函数解析式为:y=﹣2x+3.
故答案为:y=﹣2x+3.
【点睛】本题考核知识点:一次函数解析式. 解题关键点:熟记一次函数的性质.
22、4或﹣1.
【解析】
根据题意画图如下:
以O,A,B,C为顶点的四边形是平行四边形,则C(4,1)或(﹣1,1),则x=4或﹣1;故答案为4或﹣1.
23、二
【解析】
根据一次函数的图像即可求解.
【详解】
一次函数过一三四象限,故不经过第二象限.
此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析(2)
【解析】
试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;
(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.
试题解析:(1)证明:因为四边形ABCD是矩形,
所以AD∥BC,
所以∠PDO=∠QBO,
又因为O为BD的中点,
所以OB=OD,
在△POD与△QOB中,
∠PDO=∠QBO,OB=OD,∠POD=∠QOB,
所以△POD≌△QOB,
所以OP=OQ.
(2)解:PD=8-t,
因为四边形PBQD是菱形,
所以PD=BP=8-t,
因为四边形ABCD是矩形,
所以∠A=90°,
在Rt△ABP中,
由勾股定理得:,
即,
解得:t=,
即运动时间为秒时,四边形PBQD是菱形.
考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.
25、(1)见解析;(2).
【解析】
(1)由平行线的性质和角平分线的性质可得AD=BC,且AD∥BC,可证四边形ABCD是平行四边形,且AD=CD,可证四边形ABCD是菱形;
(2)由勾股定理可求AB的长,由面积法可求点D到AB的距离.
【详解】
证明:(1)∵CA平分∠DCB,DB平分∠ADC
∴∠ADB=∠CDB,∠ACD=∠ACB
∵AD∥BC
∴∠DAC=∠ACB=∠ACD,∠ADB=∠DBC=∠CDB
∴AD=CD,BC=CD
∴AD=BC,且AD∥BC
∴四边形ABCD是平行四边形,且AD=CD
∴四边形ABCD是菱形
(2)如图,过点D作DE⊥AB,
∵四边形ABCD是菱形
∴AO=CO=4,BO=DO=3,AC⊥BD
∴AB===5
∵S△ABD=AB×DE=×DB×AO
∴5DE=6×4
∴DE=
本题考查了菱形的判定和性质,角平分线的性质,勾股定理,熟练运用菱形的性质是本题的关键.
26、(1),;(2),
【解析】
(1)先把二次项系数化为1,方程两边加上一次项系数一半的平方,把左边变成完全平方式,然后用直接开平方法解即可;
(2)首先确定a,b,c的值,再计算出b2-4ac的值判断方程方程是否有解,若有解,代入公式即可求解.
【详解】
(1)
∴
解得,,;
(2)
在这里,,b=-2,
∴
解得,,
本题考查了解一元二次方程的方法,求根公式法适用于任何一元二次方程,方程的解为:
题号
一
二
三
四
五
总分
得分
组别
单次营运里程“x”(千米)
频数
第一组
0<x≤5
72
第二组
5<x≤10
a
第三组
10<x≤15
26
第四组
15<x≤20
24
第五组
20<x≤25
30
相关试卷
这是一份2024-2025学年河南省郑州市名校数学九年级第一学期开学达标检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年河南省郑州市金水区一八联合国际学校八年级(下)期中数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省郑州一八联合2023-2024学年九年级数学第一学期期末经典模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,已知与各边相切于点,,则的半径,在中,,,若,则的长为等内容,欢迎下载使用。