2025届黑龙江省哈尔滨市名校九上数学开学综合测试试题【含答案】
展开这是一份2025届黑龙江省哈尔滨市名校九上数学开学综合测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若在实数范围内有意义,则x的取值范围( )
A.x≥2B.x≤2
C.x>2D.x<2
2、(4分)一次函数y=3x+b和y=ax-3的图象如图所示,其交点为P(-2,-5),则不等式3x+b>ax-3的解集在数轴上表示正确的是( )
A.B.
C.D.
3、(4分)在一组数据3,4,4,6,8中,下列说法错误的是( )
A.它的众数是4B.它的平均数是5
C.它的中位数是5D.它的众数等于中位数
4、(4分)如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以正方形的对角线OA1为边作正方形OA1A2B1,再以正方形的对角线OA2为边作正方形OA1A2B1,…,依此规律,则点A2017的坐标是( )
A.(21008,0)B.(21008,﹣21008)C.(0,21010)D.(22019,﹣22019)
5、(4分)如果方程有增根,那么k的值( )
A.1B.-1C.±1D.7
6、(4分)直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是( )
A.B.
C.D.
7、(4分)∠A的余角是70°,则∠A的补角是( )
A.20°B.70°C.110°D.160°
8、(4分)在一条笔直的公路上有、两地,甲乙两人同时出发,甲骑自行车从地到地,乙骑自行车从地到地,到达地后立即按原路返回地.如图是甲、乙两人离地的距离与行驶时间之间的函数图象,下列说法中①、两地相距30千米;②甲的速度为15千米/时;③点的坐标为(,20);④当甲、乙两人相距10千米时,他们的行驶时间是小时或小时. 正确的个数为( )
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)用反证法证明“若,则”时,应假设_____.
10、(4分)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点处若,则为______ .
11、(4分)化简得 .
12、(4分)如图,矩形中,,,将矩形沿折叠,点落在点处.则重叠部分的面积为______.
13、(4分)若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)在平面直角坐标系,直线y=2x+2交x轴于A,交y轴于 D,
(1)直接写直线y=2x+2与坐标轴所围成的图形的面积
(2)以AD为边作正方形ABCD,连接AD,P是线段BD上(不与B,D重合)的一点,在BD上截取PG=,过G作GF垂直BD,交BC于F,连接AP.
问:AP与PF有怎样的数量关系和位置关系?并说明理由;
(3)在(2)中的正方形中,若∠PAG=45°,试判断线段PD,PG,BG之间有何关系,并说明理由.
15、(8分)俄罗斯足球世界杯点燃了同学们对足球运动的热情,某学校划购买甲、乙两种品牌的足球供学生使用.已知用1000 元购买甲种足球的数量和用1600元购买乙种足球的数量相同,甲种足球的单价比乙种足球的单价少30元.
(1)求甲、乙两种品牌的足球的单价各是多少元?
(2)学枝准备一次性购买甲、乙两种品牌的足球共25个,但总费用不超过1610元,那么这所学校最多购买多少个乙种品牌的足球?
16、(8分)在学校组织的“学习强国”知识竞赛中,每班参加比赛的人数相同,成绩分为,,,四个等级其中相应等级的得分依次记为分,分,分和分.年级组长张老师将班和班的成绩进行整理并绘制成如下的统计图:
(1)在本次竞赛中,班级的人数有多少。
(2)请你将下面的表格补充完整:
(3)结合以上统计量,请你从不同角度对这次竞赛成绩的结果进行分析(写出两条)
17、(10分)边长为,的矩形发生形变后成为边长为,的平行四边形,如图1,平行四边形中,,边上的高为,我们把与的比值叫做这个平行四边形的“形变比”.
(1)若形变后是菱形(如图2),则形变前是什么图形?
(2)若图2中菱形的“形变比”为,求菱形形变前后的面积之比;
(3)当边长为3,4的矩形变后成为一个内角是30°的平行四边形时,求这个平行四边形的“形变比”.
18、(10分)某项工程由甲、乙两个工程队合作完成,先由甲队单独做3天,剩下的工作由甲、乙两工程队合作完成,工程进度满足如图所示的函数关系:
(1)求出图象中②部分的解析式,并求出完成此项工程共需的天数;
(2)该工程共支付8万元,若按完成的工作量所占比例支付工资,甲工程队应得多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知不等式组的解集如图所示(原点没标出,数轴长度为1,黑点和圆圈均在整数的位置),则a的值为______.
20、(4分)已知直线y=2x+4与x轴、y轴分别交于A、B两点,点P(-1,m)为平面直角坐标系内一动点,若△ABP面积为1,则m的值为______.
21、(4分)直线与坐标轴围成的图形的面积为________.
22、(4分)如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是_____.
23、(4分)已知边长为5cm的菱形,一条对角线长为6cm,则另一条对角线的长为________cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)(问题情境)
如图,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
(探究展示)
(1)直接写出AM、AD、MC三条线段的数量关系: ;
(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.
(拓展延伸)
(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图,探究展示(1)、(2)中的结论是否成立,请分别作出判断,不需要证明.
25、(10分)为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图.按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入.(其中AB=9m,BC=0.5m)为标明限高,请你根据该图计算CE.(精确到0.1m)(参考数值,,)
26、(12分)如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
二次根式有意义,被开方数为非负数,即x-2≥0,解不等式求x的取值范围.
【详解】
∵在实数范围内有意义,
∴x−2≥0,解得x≥2.
故答案选A.
本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.
2、A
【解析】
直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.
【详解】
解:∵由函数图象可知,
当x>-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,
∴不等式3x+b>ax-3的解集为:x>-2,
在数轴上表示为:
故选:A.
本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.
3、C
【解析】
一组数据中出现次数最多的数为众数;
将这组数据从小到大的顺序排列,处于中间位置的一个数或两个数的平均数是中位数.
根据平均数的定义求解.
【详解】
在这一组数据中4是出现次数最多的,故众数是4;
将这组数据已经从小到大的顺序排列,处于中间位置的那个数是4,那么由中位数的定义可知,这组数据的中位数是4;
由平均数的公式的,=(3+4+4+6+8)÷5=5,平均数为5,
故选C.
本题为统计题,考查平均数、众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
4、B
【解析】
根据正方形的性质可找出部分点An的坐标,根据坐标的变化即可找出A (2 ,2 )(n为自然数),再根据2017=252×8+1,即可找出点A2019的坐标.
【详解】
观察发现:
A(0,1)、A(1,1),A(2,0),A(2,−2),A (0,−4),A (−4,−4),A (−8,0),A (−8,8),A (0,16),A (16,16)…,
∴A (2 ,2 )(n为自然数).
∵2017=252×8+1,
∴A2017的坐标是(21008,﹣21008).
故选B.
此题考查规律型:点的坐标,解题关键在于找到规律
5、A
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-7=0,所以增根是x=7,把增根代入化为整式方程的方程即可求出未知字母的值.
【详解】
∵方程的最简公分母为x-7,
∴此方程的增根为x=7.
方程整理得:48+k=7x,
将x=7代入,得48+k=49,则k=1,
选项A正确.
本题主要考查分式方程的增根,增根问题可按如下步骤进行:
①根据最简公分母确定增根的值;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
6、C
【解析】
根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案
【详解】
解:根据一次函数的系数与图象的关系依次分析选项可得:
A、由图可得,y1=kx+b中,k<0,b<0,y2=bx+k中,b>0,k<0,b、k的取值矛盾,故本选项错误;
B、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b>0,k>0,b的取值相矛盾,故本选项错误;
C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k>0,k的取值相一致,故本选项正确;
D、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k<0,k的取值相矛盾,故本选项错误;
故选:C.
本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.
7、D
【解析】
先根据互余两角的和等于90°求出∠A的度数,再根据互补两角的和等于180°列式求解即可;
或根据同一个角的补角比余角大90°进行计算.
【详解】
解:∵∠A的余角是70°,
∴∠A=90°-70°=20°,
∴∠A的补角是:180°-20°=160°;
或∠A的补角是:70°+90°=160°.
故选:A.
本题考查了余角与补角的求法,熟记互余两角的和等于90°,互补两角的和等于180°的性质是解题的关键.
8、C
【解析】
根据题意,确定①-③正确,当两人相距10千米时,应有3种可能性.
【详解】
解:根据题意可以列出甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数关系得:
y甲=-15x+30
y乙=
由此可知,①②正确.
当15x+30=30x时,
解得x=
则M坐标为(,20),故③正确.
当两人相遇前相距10km时,
30x+15x=30-10
x=,
当两人相遇后,相距10km时,
30x+15x=30+10,
解得x=
15x-(30x-30)=10
解得x=
∴④错误.
故选C.
本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.
【详解】
解:用反证法证明“若,则”时,应假设.
故答案为:.
此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
10、105°
【解析】
由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=25°,再由三角形内角和定理求出∠A,即可得到结果.
【详解】
∵AD∥BC,
∴∠ADB=∠DBG,
由折叠可得∠ADB=∠BDG,
∴∠DBG=∠BDG,
又∵∠1=∠BDG+∠DBG=50°,
∴∠ADB=∠BDG=25°,
又∵∠2=50°,
∴△ABD中,∠A=105°,
∴∠A′=∠A=105°,
故答案为:105°.
本题主要考查了翻折变换(折叠问题),平行四边形的性质,熟练掌握折叠性质和平行四边形额性质是解答本题的关键.
11、.
【解析】
试题分析:原式=.
考点:分式的化简.
12、10
【解析】
根据翻折的特点得到,.设,则.在中,,即,解出x,再根据三角形的面积进行求解.
【详解】
∵翻折,∴,,
又∵,
∴,
∴.设,则.
在中,,即,
解得,
∴,
∴.
此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用.
13、8
【解析】
解:设边数为n,由题意得,
180(n-2)=3603
解得n=8.
所以这个多边形的边数是8.
三、解答题(本大题共5个小题,共48分)
14、(1)1;(1)AP=PF且AP⊥PF,理由见解析;(3)PD1+BG1=PG1,理由见解析
【解析】
(1)先根据一次函数解析式求出A,D的坐标,根据三角形的面积公式即可求解;
(1)过点A作AH⊥DB,先计算出AD=,根据正方形的性质得到BD=,AH=DH=BD=,由PG=,得到DP+BG=,则PH=BG,可证得Rt△APH≌Rt△PFG,即可得到AP=PF且AP⊥PF;
(3)把△AGB绕点A点逆时针旋转90°得到△AMD,可得∠MDA=∠ABG=45°,DM=BG, ∠MAD=∠BAG,AM=AG,则∠MDP=90°,根据勾股定理有DP1+BG1=PM1,由∠PAG=45°,可得∠DAP+∠BAG=45°,即∠MAP=45°,易证得△AMP≌△AGP,得到MP=PG,即可DP1+BG1=PM1.
【详解】
(1)∵直线y=1x+1交x轴于A,交y轴于 D,
令x=0,解得y=1,∴D(0,1)
令y=0,解得x=-1,∴A(-1,0)
∴AO=1,DO=1,
∴直线y=1x+1与坐标轴所围成的图形△AOD=×1×1=1;
(1)AP=PF且AP⊥PF,理由如下:
过点A作AH⊥DB,如图,
∵A(-1,0),D(0,1)
∴AD===AB,
∵四边形ABCD是正方形
∴BD==,
∴AH=DH=BD=,
而PG=,
∴DP+BG=,
而DH=DP+PH=
∴PH=BG,
∵∠GBF=45°
∴BG=GF=HP
∴Rt△APH≌Rt△PFG,
∴AP=PF, ∠PAH=∠PFG
∴∠APH+∠GPF=90°即AP⊥PF;
(3)PD1+BG1=PG1,理由如下:
如图,把△AGB绕点A点逆时针旋转90°得到△AMD,连接MP,
∴∠MDA=∠ABG=45°,DM=BG, ∠MAD=∠BAG,AM=AG,
∴∠MDP=90°,
∴DP1+BG1=PM1,
又∵∠PAG=45°,
∴∠DAP+∠BAG=45°,
∴∠MAD+∠DAP =45°,即∠MAP=45°,
而AM=AG,
∴△AMP≌△AGP,
∴MP=PG,
∴PD1+BG1=PG1
此题主要考查一次函数与正方形的性质综合,解题的关键是熟知一次函数的图像与性质、正方形的性质、全等三角形的判定与性质.
15、(1)甲种品牌的足球的单价为50元/个,乙种品牌的足球的单价为1元/个;(2)这所学校最多购买2个乙种品牌的足球.
【解析】
(1)设甲种品牌的足球的单价为x元/个,则乙种品牌的足球的单价为(x+30)元/个,根据数量=总价÷单价结合用1000元购买甲种足球的数量和用1600元购买乙种足球的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设这所学校购买m个乙种品牌的足球,则购买(25-m)个甲种品牌的足球,根据总价=单价×数量结合总费用不超过1610元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
【详解】
(1)设甲种品牌的足球的单价为x元/个,则乙种品牌的足球的单价为(x+30)元/个,
根据题意得:,
解得:x=50,
经检验,x=50是所列分式方程的解,且符合题意,∴x+30=1.
答:甲种品牌的足球的单价为50元/个,乙种品牌的足球的单价为1元/个.
(2)设这所学校购买m个乙种品牌的足球,则购买(25–m)个甲种品牌的足球,
根据题意得:1m+50(25–m)≤1610,解得:m≤2.
答:这所学校最多购买2个乙种品牌的足球.
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
16、(1)9人;(2)见解析;(3)略.
【解析】
(1)根据一班的成绩统计可知一共有25人,因为每班参加比赛的人数相同,用总人数乘以C级以上的百分比即可得出答案,
(2)根据平均数、众数、中位数的概念,结合一共有25人,即可得出答案.
(3)分别从级及以上人数和众数的角度分析那个班成绩最好即可.
【详解】
解:(1)班有人,人.
所以班C级人数有9人
(2)请你将下面的表格补充完整:
(3)从级及以上人数条看,班的人数多于班人数,此时班的成绩好些
从众数的角度看,班的众数高于班众数,此时802班的成绩差一些.
本题考查条形统计图和扇形统计图,熟练掌握计算法则是解题关键.
17、(1)正方形;(2);(3)或.
【解析】
(1)根据形变后的图形为菱形,即可推断.
(2)由题意得形变比,再分别用代数式表示形变前和形变后的面积,计算比值即可.
(3)分以AB为底边和以AD为底边两种情况讨论,可求这个平行四边形的“形变比”.
【详解】
(1)∵形变后是菱形
∴AB=BC=CD=DA
则形变前的四条边也相等
∵四条边相等的矩形是正方形
∴形变前的图形是正方形
(2)根据题意知道:
S形变前=a×b=a2
S形变后=a×h=a××a=a2
∴
(3)当形变后四边形一个内角为30°时
此时应分两种情况讨论:
第一种:以AB为底边4×=2
∴这个四边形的形变比为:
第二种:以AD为底边
则
∴这个四边形的形变比为:.
本题考查了正方形、菱形的性质,正方形的面积和菱形的面积的求法,还利用了同底等高的三角形的面积相等,同时还训练了学生的理解能力,以及对新定义的理解和运用.
18、(1),完成此工程共需9天;(2)6万元.
【解析】
(1)设一次函数的解析式(合作部分)是y=kx+b,将(3,),(5,)代入,可求得函数解析式,令y=1,即可求得完成此项工程一共需要多少天.
(2)根据甲的工作效率是,于是得到甲9天完成的工作量是9×=,即可得到结论.
【详解】
解:(1)设一次函数的解析式(合作部分)是y=kx+b(k≠0,k,b是常数).
∵(3,),(5,)在图象上.
代入得
解得:
∴一次函数的表达式为y=x-.
当y=1时,x-=1,解得x=9,
∴完成此房屋装修共需9天;
(2)由图象知,甲的工作效率是,
∴甲9天完成的工作量是:9×=,
∴×8=6万元.
本题主要考查了一次函数的应用,待定系数法求函数解析式,数学公式(工作效率=工作总量÷工作时间)的灵活运用,能根据图象提供的数据进行计算是解此题的关键,题型较好.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
先解出关于x的不等式,由数轴上表示的解集求出的范围即可.
【详解】
解:,
不等式组整理得:,
由数轴得:,可得,
解得:,
故答案为2
此题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.
20、3或1
【解析】
过点P作PE⊥x轴,交线段AB于点E,即可求点E坐标,根据题意可求点A,点B坐标,由可求m的值.
【详解】
解:∵直线y=2x+4与x轴、y轴分别交于A、B两点,
∴当x=0时,y=4
当y=0时,x=-2
∴点A(-2,0),点B(0,4)
如图:过点P作PE⊥x轴,交线段AB于点E
∴点E横坐标为-1,
∴y=-2+4=2
∴点E(-1,2)
∴|m-2|=1
∴m=3或1
故答案为:3或1
本题考查了一次函数图象上点的坐标特征,熟练运用一次函数的性质解决问题是本题的关键.
21、1
【解析】
由一次函数的解析式求得与坐标轴的交点,然后利用三角形的面积公式即可得出结论.
【详解】
由一次函数y=x+4可知:一次函数与x轴的交点为(-4,0),与y轴的交点为(0,4),
∴其图象与两坐标轴围成的图形面积=×4×4=1.
故答案为:1.
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
22、175°
【解析】
如图所示,∵∠ADC、∠BCD的平分线交于点O1,
∴∠O1DC+∠O1CD=(∠ADC+∠DCB),
∵∠O1DC、∠O1CD的平分线交于点O2,
∴∠O2DC+∠O2CD=(∠O1DC+∠O1CD)=(∠ADC+∠DCB),
同理可得,∠O3DC+∠O3CD=(∠O2DC+∠O2CD)=(∠ADC+∠DCB),
由此可得,∠O5DC+∠O5CD=(∠O4DC+∠O4CD)=(∠ADC+∠DCB),
∴△CO5D中,∠CO5D=180°﹣(∠O5DC+∠O5CD)=180°﹣(∠ADC+∠DCB),
又∵四边形ABCD中,∠DAB+∠ABC=200°,
∴∠ADC+∠DCB=160°,
∴∠CO5D=180°﹣×160°=180°﹣5°=175°,
故答案为175°.
23、8
【解析】
根据菱形的对角线互相垂直平分,得已知对角线的一半是1.根据勾股定理,得要求的对角线的一半是4,则另一条对角线的长是8.
【详解】
解:在菱形ABCD中,AB=5,AC=6,
因为对角线互相垂直平分,
所以∠AOB=90°,AO=1,
在RT△AOB中,BO=,
∴BD=2BO=8.
注意菱形对角线的性质:菱形的对角线互相垂直平分.熟练运用勾股定理.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)成立.证明见解析;(3) (1)成立;(2)不成立
【解析】
(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.
(2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.
(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.
【详解】
解:(1)证明:延长AE、BC交于点N,如图1(1),
∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.
∴∠ENC=∠MAE.∴MA=MN.
∴△ADE≌△NCE(AAS)
∴AD=NC.∴MA=MN=NC+MC=AD+MC.
(2)AM=DE+BM成立.
证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.
∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.
∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.
∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.
∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.
∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.
(3)①结论AM=AD+MC仍然成立.
证明:延长AE、BC交于点P,如图2(1),
∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.
∴∠EPC=∠MAE.∴MA=MP.
∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.
②结论AM=DE+BM不成立.
证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.
∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,
∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.
∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM
=∠BAM+∠QAB ∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.
∴△ABQ≌△ADE(AAS)∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.
∴AM=DE+BM不成立.
本题是四边形综合题,主要考查了正方形和矩形的性质,全等三角形的性质和判定,等腰三角形的判定,平行线的性质,角平分线的定义等,考查了基本的模型构造:平行和中点构造全等三角形.有较强的综合性.
25、2.3m
【解析】
根据锐角三角函数的定义,可在Rt△ACD中解得BD的值,进而求得CD的大小;在Rt△CDE中,利用正弦的定义,即可求得CE的值.
【详解】
在Rt△ABD中,∠BAD=18°,AB=9m,
∴BD=AB×tan18°≈2.92m,
∴CD=BD-BC=2.92-0.5=2.42m,
在Rt△CDE中,∠CDE=72°,CD≈2.42m,
∴CE=CD×sin72°≈2.3m.
答:CE的高为2.3m.
本题考查了解直角三角形的应用,解直角三角形的应用是中考必考题,一般难度不大,正确作出辅助线构造直角三角形是解题关键.
26、证明见解析.
【解析】
利用ASA即可得证;
【详解】
∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AB∥CD,∴∠BAE=∠DCF
∴在△ABE和△CDF中,,∴△ABE≌△CDF,∴BE=DF.
考点:1.平行四边形的性质;2.三角形全等的判定与性质.
题号
一
二
三
四
五
总分
得分
批阅人
成绩
班级
平均数(分)
中位数 (分)
众数 (分)
B级及以上人数
班
班
平均数(分)
中位数(分)
众数(分)
级及以上人数
班
87.6
90
18
班
87.6
100
相关试卷
这是一份2024年黑龙江省哈尔滨市五常市山林一中学九上数学开学综合测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年黑龙江省哈尔滨市数学九上开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年黑龙江省哈尔滨市名校数学九上开学达标检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。