年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2025届黑龙江省鹤岗市数学九年级第一学期开学调研模拟试题【含答案】

    2025届黑龙江省鹤岗市数学九年级第一学期开学调研模拟试题【含答案】第1页
    2025届黑龙江省鹤岗市数学九年级第一学期开学调研模拟试题【含答案】第2页
    2025届黑龙江省鹤岗市数学九年级第一学期开学调研模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届黑龙江省鹤岗市数学九年级第一学期开学调研模拟试题【含答案】

    展开

    这是一份2025届黑龙江省鹤岗市数学九年级第一学期开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )
    A.4小时B.4.4小时C.4.8小时D.5小时
    2、(4分)在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为( )
    A.﹣3B.﹣5C.7D.﹣3或﹣5
    3、(4分)数据1、2、5、3、5、3、3的中位数是( )
    A.1B.2C.3D.5
    4、(4分)关于一个四边形是不是正方形,有如下条件①对角线互相垂直且相等的平行四边形;②对角线互相垂直的矩形;③对角线相等的菱形;④对角线互相垂直平分且相等的四边形;以上条件,能判定正方形的是( )
    A.①②③B.②③④C.①③④D.①②③④
    5、(4分)当分式有意义时,则x的取值范围是( )
    A.x≠2B.x≠-2C.x≠D.x≠-
    6、(4分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是( )
    A. B.C. D.
    7、(4分)下列各组线段 中,能构成直角三角形的是( )
    A.2,3,4 B.3,4,6 C.5,12,13 D.4,6,7
    8、(4分)三角形的三边长为,则这个三角形是( )
    A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在▱ABCD中,AD=8,点E、F分别是BD、CD的中点,则EF=_____.
    10、(4分)将直线向上平移1个单位,那么平移后所得直线的表达式是_______________
    11、(4分)如图是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE=______________cm.
    12、(4分)一次函数图象过点日与直线平行,则一次函数解析式__________.
    13、(4分)如图,是的角平分线,交于,交于.且交于,则________度.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在平行四边形ABCD中,E、 F分别为边AB、CD的中点,BD是对角线.过点有作AG∥DB交CB的延长线于点G.
    (1)求证:△ADE≌△CBF;
    (2)若∠G=90° ,求证:四边形DEBF是菱形.
    15、(8分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点N沿路线O→A→C运动.
    (1)求直线AB的解析式.
    (2)求△OAC的面积.
    (3)当△ONC的面积是△OAC面积的时,求出这时点N的坐标.
    16、(8分)如图,□ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.
    (1)求证:四边形CMAN是平行四边形.
    (2)已知DE=4,FN=3,求BN的长.
    17、(10分)如图,已知函数和的图象交于点,这两个函数的图象与轴分别交于点、.
    (1)分别求出这两个函数的解析式;
    (2)求的面积;
    (3)根据图象直接写出时,的取值范围.
    18、(10分)如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接得到四边形DEFG.
    (1)求证:四边形DEFG是平行四边形;
    (2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的长度.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,正方形中,对角线,交于点,点在上,,,垂足分别为点,,,则______.
    20、(4分)如图,在平面直角坐标系中,AD∥BC,AD=5,B(-3,0),C(9,0),点E是BC的中点,点P是线段BC上一动点,当PB=________时,以点P、A、D、E为顶点的四边形是平行四边形.
    21、(4分)如图,把放在平面直角坐标系中,,,点A、B的坐标分别为、,将沿x轴向右平移,当点C落在直线上时,线段BC扫过的面积为______.
    22、(4分)如图,是菱形的对角线上一点,过点作于点. 若,则点到边的距离为______.
    23、(4分)一次函数y=(2m﹣6)x+4中,y随x的增大而减小,则m的取值范围是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.
    根据以上信息,解答下列问题:
    (1)被调查的学生共有 人,并补全条形统计图;
    (2)在扇形统计图中,m= ,n= ,表示区域C的圆心角为 度;
    (3)全校学生中喜欢篮球的人数大约有多少?
    25、(10分)如图,△ABC与△AFD为等腰直角三角形,∠FAD=∠BAC=90°,点D在BC上,则:
    (1)求证:BF=DC.
    (2)若BD=AC,则求∠BFD的度数.
    26、(12分)如图,在矩形 ABCD中, AB16 , BC18 ,点 E在边 AB 上,点 F 是边 BC 上不与点 B、C 重合的一个动点,把△EBF沿 EF 折叠,点B落在点 B' 处.
    (I)若 AE0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;
    (II)若 AE3 时, 且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;
    (III)若AE8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围.

    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    分析:由图中可以看出,2小时调进物资30吨,调进物资共用4小时,说明物资一共有60吨;2小时后,调进物资和调出物资同时进行,4小时时,物资调进完毕,仓库还剩10吨,说明调出速度为:(60-10)÷2吨,需要时间为:60÷25时,由此即可求出答案.
    解答:解:物资一共有60吨,调出速度为:(60-10)÷2=25吨,需要时间为:60÷25=2.4(时)
    ∴这批物资从开始调进到全部调出需要的时间是:2+2.4=4.4小时.
    2、A
    【解析】
    分三种情形讨论求解即可解决问题;
    【详解】
    解:对于函数y=|x﹣a|,最小值为a+1.
    情形1:a+1=0,
    a=﹣1,
    ∴y=|x+1|,此时x=﹣1时,y有最小值,不符合题意.
    情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+1,得到a=﹣2.
    ∴y=|x+2|,符合题意.
    情形2:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+1,方程无解,此种情形不存在,
    综上所述,a=﹣2.
    故选A.
    本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.
    3、C
    【解析】
    试题分析:中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为1,2,1,1,1,5,5,∴中位数是按从小到大排列后第4个数为:1.故选C.
    4、D
    【解析】
    利用正方形的判定方法逐一分析判断得出答案即可.
    【详解】
    解:①对角线互相垂直且相等的平行四边形是正方形,故正确;
    ②对角线互相垂直的矩形是正方形,故正确;
    ③对角线相等的菱形是正方形,故正确;
    ④对角线互相垂直平分且相等的四边形是正方形,故正确;
    故选:D.
    本题主要考查正方形的判定方法,掌握正方形的判定方法是解题的关键.
    5、B
    【解析】
    根据分母不为零列式求解即可.
    【详解】
    分式中分母不能为0,
    所以,3 x+6≠0,解得:x≠-2,
    故选B.
    本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:①分式无意义⇔分母为零;②分式有意义⇔分母不为零;③分式值为零⇔分子为零且分母不为零.
    6、D
    【解析】
    根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.
    【详解】
    ∵二次根式在实数范围内有意义,
    ∴被开方数x+2为非负数,
    ∴x+2≥0,
    解得:x≥-2.
    故答案选D.
    本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.
    7、C
    【解析】试题分析:选项A,22+32=13≠42;选项B,32+42=25≠62;选项C,52+122=169=132;选项D,42+62=52≠1.由勾股定理的逆定理可得,只有选项C能够成直角三角形,故答案选C.
    考点:勾股定理的逆定理.
    8、C
    【解析】
    利用完全平方公式把等式变形为a2+b2=c2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案.
    【详解】
    ∵,
    ∴a2+2ab+b2=c2+2ab,
    ∴a2+b2=c2,
    ∴这个三角形是直角三角形,
    故选:C.
    本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴BC=AD=8,
    ∵点E、F分别是BD、CD的中点,
    ∴EF=BC=×8=1.
    故答案为1.
    此题考查了平行四边形的性质与三角形中位线的性质.熟练掌握相关性质是解题关键.
    10、
    【解析】
    平移时k的值不变,只有b发生变化.
    【详解】
    原直线的k=2,b=0;向上平移2个单位长度,得到了新直线,
    那么新直线的k=2,b=0+1=1,
    ∴新直线的解析式为y=2x+1.
    故答案为:y=2x+1.
    本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.
    11、
    【解析】
    试题分析:此题考查了翻折变换、勾股定理及锐角三角函数的定义,解答本题的关键是掌握翻折变换前后对应边相等、对应角相等,难度一般.
    在RT△ABC中,可求出AB的长度,根据折叠的性质可得出AE=EB=AB,在RT△ADE中,利用tanB=tan∠DAE即可得出DE的长度.
    ∵AC=6,BC=8,
    ∴AB==10,tanB=,
    由折叠的性质得,∠B=∠DAE,tanB=tan∠DAE=,
    AE=EB=AB=5,
    ∴DE=AEtan∠DAE=.
    故答案为.
    考点:翻折变换(折叠问题).
    12、
    【解析】
    设一次函数解析式为y=kx+b,先把(0,-1)代入得b=-1,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式.
    【详解】
    解:设一次函数解析式为y=kx+b,
    把(0,-1)代入得b=-1,
    ∵直线y=kx+b与直线y=1-3x平行,
    ∴k=-3,
    ∴一次函数解析式为y=-3x-1.
    故答案为:y=-3x-1.
    本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.
    13、
    【解析】
    先根据平行四边形的判定定理得出四边形AEDF为平行四边形,再根据平行线的性质及角平分线的性质得出∠1=∠3,故可得出▱AEDF为菱形,根据菱形的性质即可得出.
    【详解】
    如图所示:
    ∵DE∥AC,DF∥AB,
    ∴四边形AEDF为平行四边形,
    ∴OA=OD,OE=OF,∠2=∠3,
    ∵AD是△ABC的角平分线,
    ∵∠1=∠2,
    ∴∠1=∠3,
    ∴AE=DE.
    ∴▱AEDF为菱形.
    ∴AD⊥EF,即∠AOF=1°.
    故答案是:1.
    考查的是菱形的判定与性质,根据题意判断出四边形AEDF是菱形是解答此题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)根据已知条件证明AE=CF,从而根据SAS可证明两三角形全等;
    (2)先证明DE=BE,再根据邻边相等的平行四边形是菱形,从而得出结论.
    【详解】
    证明:(1)∵四边形ABCD是平行四边形,
    ∴AB=CD,AD=BC,∠A=∠C,
    ∵点E、F分别是AB、CD的中点,
    ∴AE=AB,CF=CD,
    ∴AE=CF,
    在△ADE和△CBF中,
    ∵,
    ∴△ADE≌△CBF(SAS);
    (2)∵∠G=90°,AG∥BD,AD∥BG,
    ∴四边形AGBD是矩形,
    ∴∠ADB=90°,
    在Rt△ADB中
    ∵E为AB的中点,
    ∴AE=BE=DE,
    ∵DF∥BE,DF=BE,
    ∴四边形DEBF是平行四边形,
    ∴四边形DEBF是菱形.
    本题主要考查了平行四边形的性质、菱形的判定,直角三角形的性质:在直角三角形中斜边中线等于斜边一半,难度适中.
    15、(1)y=-x+6;(2)12;(3)或.
    【解析】
    (1)利用待定系数法,即可求得函数的解析式;
    (2)由一次函数的解析式,求出点C的坐标,即OC的长,利用三角形的面积公式,即可求解;
    (3)当△ONC的面积是△OAC面积的时,根据三角形的面积公式,即可求得N的横坐标,然后分别代入直线OA的解析式,即可求得N的坐标.
    【详解】
    (1)设直线AB的函数解析式是y=kx+b,
    根据题意得:,解得:,
    ∴直线AB的解析式是:y=-x+6;
    (2)在y=-x+6中,令x=0,解得:y=6,
    ∴;
    (3)设直线OA的解析式y=mx,把A(4,2)代入y=mx,得:4m=2,
    解得:,即直线OA的解析式是:,
    ∵△ONC的面积是△OAC面积的,
    ∴点N的横坐标是,
    当点N在OA上时,x=1,y=,即N的坐标为(1,),
    当点N在AC上时,x=1,y=5,即N的坐标为(1,5),
    综上所述,或.
    本题主要考查用待定系数法求函数解析式,根据平面直角坐标系中几何图形的特征,求三角形的面积和点的坐标,数形结合思想和分类讨论思想的应用,是解题的关键.
    16、(1)详见解析;(2)1.
    【解析】
    试题分析:(1)通过AE⊥BD,CF⊥BD证明AE∥CF,再由四边形ABCD是平行四边形得到AB∥CD,由两组对边分别平行的四边形是平行四边形可证得四边形CMAN是平行四边形;(2)证明△MDE≌∠NBF,根据全等三角形的性质可得DE=BF=4,再由勾股定理得BN=1.
    试题解析:(1)证明:∵AE⊥BD CF⊥BD
    ∴AE∥CF
    又∵四边形ABCD是平行四边形
    ∴AB∥CD
    ∴四边形CMAN是平行四边形
    (2)由(1)知四边形CMAN是平行四边形
    ∴CM=AN.
    又∵四边形ABCD是平行四边形
    ∴ AB=CD,∠MDE=∠NBF.
    ∴AB-AN=CD-CM,即DM=BN.
    在△MDE和∠NBF中
    ∠MDE=∠NBF,∠DEM=∠BFN=90°,DM=BN
    ∴△MDE≌∠NBF
    ∴DE=BF=4,
    由勾股定理得BN===1.
    答:BN的长为1.
    考点:平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.
    17、 (1),;(2)S△ABC=;(3)时,.
    【解析】
    (1)把点P(-2,-5)分别代入函数y1=2x+b和y2=ax-3,求出a、b的值即可;
    (2)根据(1)中两个函数的解析式得出A、B两点的坐标,再由三角形的面积公式即可得出结论;
    (3)直接根据两函数图象的交点坐标即可得出结论.
    【详解】
    (1)∵将点代入,得,解得.
    将点代入,得,解得.
    这两个函数的解析式分别为和.
    (2)∵在中,令,得.
    .
    ∵在中,令,得,
    .
    .
    (3)由函数图象可知,当时,.
    本题考查的是一次函数与一元一次不等式,能利用函数图象直接得出不等式的解集是解答此题的关键.
    18、(1)证明见解析;(2)1
    【解析】
    (1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DG=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可.
    (2)想办法证明OM=MF=ME即可解决问题.
    【详解】
    (1)证明:∵D、G分别是AB、AC的中点,
    ∴DG∥BC,DG=BC,
    ∵E、F分别是OB、OC的中点,
    ∴EF∥BC,EF=BC,
    ∴DG=EF,DG∥EF,
    ∴四边形DEFG是平行四边形;
    (2)∵OB⊥OC,
    ∴∠BOC=90°,
    ∵∠EOM+∠COM=90°,∠EOM+∠OCB=90°,
    ∴∠COM=∠OCB,
    ∵EF∥BC,
    ∴∠OFE=∠OCB,
    ∴∠MOF=∠MFO,
    ∴OM=MF,
    ∵∠OEM+∠OFM=90°,∠EOM+∠MOF=90°,
    ∴∠EOM=∠MEO,
    ∴OM=EM,
    ∴EF=2OM=1.
    由(1)有四边形DEFG是平行四边形,
    ∴DG=EF=1.
    本题考查平行四边形的判定与性质,三角形的中位线,直角三角形的性质,解本题的关键是判定四边形DEFG是平行四边形.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    由S△BOE+S△COE=S△BOC即可解决问题.
    【详解】
    连接OE.
    ∵四边形ABCD是正方形,AC=10,
    ∴AC⊥BD,BO=OC=1,
    ∵EG⊥OB,EF⊥OC,
    ∴S△BOE+S△COE=S△BOC,
    ∴•BO•EG+•OC•EF=•OB•OC,
    ∴×1×EG+×1×EF=×1×1,
    ∴EG+EF=1.
    故答案为1.
    本题考查正方形的性质,利用面积法是解决问题的关键,这里记住一个结论:等腰三角形底边上一点到两腰的距离之和等于腰上的高,填空题可以直接应用,属于中考常考题型
    20、1或11
    【解析】
    根据题意求得AD的值,再利用平行四边形性质分类讨论,即可解决问题.
    【详解】
    ∵B(-3,0),C(9,0)∴BC=12
    ∵点E是BC的中点∴BE=CE=6
    ∵AD∥BC∴AD=5
    ∴当PE=5时,以点P、A、D、E为顶点的四边形是平行四边形.分两种情况:
    当点P在点E左边时,PB=BE-PE=6-5=1;
    ②当点P 在点E右边时,PB=BE+PE=6+5=11
    综上所述,当PB的长为1或11时,以点P、A、D、E为顶点的四边形是平行四边形.
    本题考查了平行四边形的性质,注意分类讨论思想的运用.
    21、14
    【解析】
    先求AC的长,即求C的坐标,由平移性质得,平移的距离,因此可求线段BC扫过的面积.
    【详解】
    点A、B的坐标分别为、,

    在中,,,


    由于沿x轴平移,点纵坐标不变,且点C落在直线上时,,

    平移的距离为,
    扫过面积,
    故答案为:14
    本题考查了一次函数图象上点的坐标特征,平移的性质,关键是找到平移的距离.
    22、4
    【解析】
    首先根据菱形的性质,可得出∠ABD=∠CBD,然后根据角平分线的性质,即可得解.
    【详解】
    解:∵四边形ABCD为菱形,BD为其对角线
    ∴∠ABD=∠CBD,即BD为角平分线
    ∴点E到边AB的距离等于EF,即为4.
    此题主要考查菱形和角平分线的性质,熟练运用,即可解题.
    23、m<3.
    【解析】
    试题分析:∵一次函数y=(2m-6)x+5中,y随x的增大而减小,
    ∴2m-6<0,
    解得,m<3.
    考点:一次函数图象与系数的关系.
    二、解答题(本大题共3个小题,共30分)
    24、(1)学生总数100人,跳绳40人,条形统计图见解析;(2)144°;(3)200人.
    【解析】
    (1)用B组频数除以其所占的百分比即可求得样本容量;
    (2)用A组人数除以总人数即可求得m值,用D组人数除以总人数即可求得n值;
    (3)用总人数乘以D类所占的百分比即可求得全校喜欢篮球的人数;
    【详解】
    解:(1)观察统计图知:喜欢乒乓球的有20人,占20%,
    故被调查的学生总数有20÷20%=100人,
    喜欢跳绳的有100﹣30﹣20﹣10=40人,
    条形统计图为:
    (2)∵A组有30人,D组有10人,共有100人,
    ∴A组所占的百分比为:30%,D组所占的百分比为10%,
    ∴m=30,n=10;
    表示区域C的圆心角为×360°=144°;
    (3)∵全校共有2000人,喜欢篮球的占10%,
    ∴喜欢篮球的有2000×10%=200人.
    考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    25、(1)见解析;(2)67.5°.
    【解析】
    (1)先根据等腰直角三角形的性质得出AB=AC,AF=AD,∠FAD=∠BAC=90°,则有∠BAF=∠CAD,即可利用SAS证明△ABF≌△ACD,则结论可证;
    (2)先根据等腰直角三角形的性质和三角形内角和定理求出的度数,然后由△ABF≌△ACD得出∠ABF=∠ACD=45°,最后利用∠BFD=180°﹣∠ABF﹣∠ABC﹣∠BDF即可求解.
    【详解】
    (1)∵△ABC与△AFD为等腰直角三角形
    ∴AB=AC,AF=AD,∠FAD=∠BAC=90°,
    ∴∠BAF=∠CAD,且AB=AC,AF=AD
    ∴△ABF≌△ACD(SAS)
    ∴BF=DC
    (2)∵△ABC与△AFD为等腰直角三角形
    ∴∠ABC=∠ACB=∠ADF=45°
    ∵AB=AC=BD
    ∴∠BDA=∠BAD=67.5°
    ∴∠BDF=22.5°
    ∵△ABF≌△ACD,
    ∴∠ABF=∠ACD=45°
    ∴∠BFD=180°﹣∠ABF﹣∠ABC﹣∠BDF=67.5°
    本题主要考查等腰直角三角形的性质,全等三角形的判定及性质,三角形内角和定理,掌握等腰直角三角形的性质,全等三角形的判定及性质,三角形内角和定理是解题的关键.
    26、 (I) ;(II) 16或10;(III) .
    【解析】
    (I)根据已知条件直接写出答案即可.
    (II)分两种情况: 或讨论即可.
    (III)根据已知条件直接写出答案即可.
    【详解】
    (I) ;
    (II)∵四边形是矩形,∴,.
    分两种情况讨论:
    (i)如图1,
    当时,即是以为腰的等腰三角形.
    (ii)如图2,当时,过点作∥,分别交与于点、.
    ∵四边形是矩形,
    ∴∥,.
    又∥,
    ∴四边形是平行四边形,又,
    ∴□是矩形,∴,,即,
    又,
    ∴,,
    ∵,∴,
    ∴,
    在中,由勾股定理得:,
    ∴,
    在中,由勾股定理得:,
    综上,的长为16或10.
    (III) . (或).
    本题主要考查了四边形的动点问题.
    题号





    总分
    得分

    相关试卷

    2025届黑龙江省哈尔滨旭东中学九年级数学第一学期开学调研试题【含答案】:

    这是一份2025届黑龙江省哈尔滨旭东中学九年级数学第一学期开学调研试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山西临汾平阳中学九年级数学第一学期开学调研模拟试题【含答案】:

    这是一份2024年山西临汾平阳中学九年级数学第一学期开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年黑龙江省鹤岗市绥滨五中学数学九年级第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2024年黑龙江省鹤岗市绥滨五中学数学九年级第一学期开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map