![2025届黑龙江省伊春市数学九年级第一学期开学检测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16228538/0-1728365917650/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届黑龙江省伊春市数学九年级第一学期开学检测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16228538/0-1728365917697/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届黑龙江省伊春市数学九年级第一学期开学检测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16228538/0-1728365917712/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届黑龙江省伊春市数学九年级第一学期开学检测试题【含答案】
展开
这是一份2025届黑龙江省伊春市数学九年级第一学期开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列调查中,最适合采用全面调查(普查)方式的是( )
A.对重庆市初中学生每天阅读时间的调查
B.对端午节期间市场上粽子质量情况的调查
C.对某批次手机的防水功能的调查
D.对某校九年级3班学生肺活量情况的调查
2、(4分)若x、y都是实数,且,则xy的值为
A.0B.C.2D.不能确定
3、(4分)下列图形中,既是轴对称图形又是中心对称图形的是
A.B.C.D.
4、(4分)当时,一次函数的图象大致是( )
A.B.
C.D.
5、(4分)下列条件中能构成直角三角形的是( ).
A.2、3、4B.3、4、5C.4、5、6D.5、6、7
6、(4分)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠AED′的大小为( )
A.110°B.108°C.105°D.100°
7、(4分)已知△ABC中,AB=8,BC=15,AC=17,则下列结论无法判断的是( )
A.△ABC是直角三角形,且AC为斜边
B.△ABC是直角三角形,且∠ABC=90°
C.△ABC的面积为60
D.△ABC是直角三角形,且∠A=60°
8、(4分)在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是( )
A.18,18,1B.18,17.5,3C.18,18,3D.18,17.5,1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)函数y=中自变量x的取值范围是______.
10、(4分)一个有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的若干分内既进水又出水,之后只出水不进水.每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图.则a= .
11、(4分)方程的两个根是和,则的值为____.
12、(4分)如图,直线y=-2x+2与x轴、y轴分别相交于A、B两点,四边形ABCD是正方形,曲线在第一象限经过点D,则k=_______.
13、(4分)如图,点P是边长为5的正方形ABCD内一点,且PB=2,PB⊥BF,垂足为点B,请在射线BF上找一点M,使得以B,M,C为顶点的三角形与ABP相似,则BM=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整
(收集数据)
甲班15名学生测试成绩统计如下:(满分100分)
68,72,89,85,82,85,74,92,80,85,78,85,69,76,80
乙班15名学生测试成绩统计如下:(满分100分)
86,89,83,76,73,78,67,80,80,79,80,84,82,80,83
(整理数据)
按如下分数段整理、描述这两组样本数据
在表中,a= ,b= .
(分析数据)
(1)两组样本数据的平均数、众数、中位数、方差如下表所示:
在表中:x= ,y= .
(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有 人
(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.
15、(8分)已知,在菱形ABCD中,G是射线BC上的一动点(不与点B,C重合),连接AG,点E、F是AG上两点,连接DE,BF,且知∠ABF=∠AGB,∠AED=∠ABC.
(1)若点G在边BC上,如图1,则:
①△ADE与△BAF______;(填“全等”或“不全等”或“不一定全等”)
②线段DE、BF、EF之间的数量关系是______;
(2)若点G在边BC的延长线上,如图2,那么上面(1)②探究的结论还成立吗?如果成立,请给出证明;如果不成立,请说明这三条线段之间又怎样的数量关系,并给出你的证明.
16、(8分)甲、乙两车分别从A地将一批物品运往B地,再返回A地,如图表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:
(1)甲车出发多长时间后被乙车追上?
(2)甲车与乙车在距离A地多远处迎面相遇?
(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?
17、(10分)已知=,求代数式的值.
18、(10分)现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.
(1)如图1,若点O与点A重合,则OM与ON的数量关系是 ;
(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?
(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图所示,平行四边形中,点在边上,以为折痕,将向上翻折,点正好落在上的处,若的周长为8,的周长为22,则的长为__________.
20、(4分)已知一次函数y=bx+5和y=﹣x+a的图象交于点P(1,2),直接写出方程的解_____.
21、(4分)正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=2,AE=8,则ED=_____.
22、(4分)如图,正方形CDEF内接于,,,则正方形的面积是________.
23、(4分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平行四边形ABCD中,点O是对角线BD中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE,如图1.
(1)求证:四边形BEDF是平行四边形;
(2)在(1)中,若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、R,如图2.
①当CD=6,CE=4时,求BE的长.
②探究BH与AF的数量关系,并给予证明.
25、(10分)有一个等腰三角形的周长为。
(1)写出底边关于腰长的函数关系式;
(2)写出自变量的取值范围。
26、(12分)如图,四边形是平行四边形,、是对角线上的两个点,且.求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;
B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;
C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;
D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;
故选D.
2、C
【解析】
由题意得,2x−1⩾0且1−2x⩾0,
解得x⩾且x⩽,
∴x=,
y=4,
∴xy=×4=2.
故答案为C.
3、D
【解析】
根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;
B. 不是轴对称图形,是中心对称图形,故不符合题意;
C. 是轴对称图形,但不是中心对称图形,故不符合题意;
D. 既是轴对称图形又是中心对称图形,故符合题意.
故选D.
本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.
4、A
【解析】
根据k=1>0可得图象的斜率,根据b<0可得直线与y轴的交点在x轴的下方.
【详解】
解:∵k=1>0,
∴y随x的增大而增大,
又∵b<0,
∴函数图象与y轴交于负半轴.
故选A.
本题主要考查一次函数的图象性质,当=kx+b(k,b为常数,k≠0)时:
当k>0,b>0,这时此函数的图象经过一,二,三象限;
当k>0,b
![英语朗读宝](http://img.51jiaoxi.com/images/ed4b79351ae3a39596034d4bbb94b742.jpg)