![2025届湖北省随州市广水市数学九年级第一学期开学质量检测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16232247/0-1728462094264/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届湖北省随州市广水市数学九年级第一学期开学质量检测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16232247/0-1728462094325/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届湖北省随州市广水市数学九年级第一学期开学质量检测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16232247/0-1728462094351/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届湖北省随州市广水市数学九年级第一学期开学质量检测试题【含答案】
展开
这是一份2025届湖北省随州市广水市数学九年级第一学期开学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题中,是真命题的是( )
A.对角线互相垂直的四边形是菱形B.对角形相等的四边形是矩形
C.顺次连结平行四边形各边中点所得四边形是平行四边形D.一组邻边相等的平行四边形是正方形
2、(4分)明明家与学校的图书馆和食堂在同一条直线上,食堂在家和图书馆之间。一天明明先去食堂吃了早餐,接着去图书馆看了一会书,然后回家。如图反应了这个过程中明明离家的距离y与时间x之间的对应关系,下列结论:①明明从家到食堂的平均速度为0.075km/min;②食堂离图书馆0.2km;③明明看书用了30min;④明明从图书馆回家的平均速度是0.08km/min,其中正确的个数是( )
A.1个B.2个C.3个D.4个
3、(4分)对于函数有以下四个结论,其中正确的结论是( )
A.函数图象必经过点B.函数图象经过第一、二、三象限
C.函数值y随x的增大而增大D.当时,
4、(4分)下列式子从左至右变形不正确的是( )
A.=B.=
C.=-D.=
5、(4分)如图,被笑脸盖住的点的坐标可能是( )
A.B.C.D.
6、(4分)已知等腰三角形的一个角为72度,则其顶角为( )
A.B.
C.D.或
7、(4分)下列各点中,在正比例函数的图象上的点是( )
A.B.C.D.
8、(4分)在Rt△ABC中,BC是斜边,∠B=40°,则∠C=( )
A.90°B.60°C.50°D.40°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若分式的值为,则的值为_______.
10、(4分)不等式的正整数解是______.
11、(4分)在平面直角坐标系中,已知点,如果以为顶点的四边形是平行四边形,那么满足条件的所有点的坐标为___________.
12、(4分)如图,在△ABC中,∠BAC=60°,AD平分∠BAC,若AD=6,DE⊥AB,则DE的长为_____________.
13、(4分)若关于x的方程=m无解,则m的值为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)学海书店购一批故事书进行销售,其进价为每本40元,如果按每本故事书50元进行出售,每月可以售出500本故事书,后来经过市场调查发现,若每本故事书涨价1元,则故事书的销量每月减少20本.
(1)若学海书店要保证每月销售此种故事书盈利6000元,同时又要使购书者得到实惠,则每本故事书需涨价多少元;
(2)若使该故事书的月销量不低于300本,则每本故事书的售价应不高于多少元?
15、(8分)在平面直角坐标系xOy中,直线过A(0,—3),B(1,2).求直线的表达式.
16、(8分)如图,在平面直角坐标系中,点的坐标为,点在轴的正半轴上.若点,在线段上,且为某个一边与轴平行的矩形的对角线,则称这个矩形为点、的“涵矩形”.下图为点,的“涵矩形”的示意图.
(1)点的坐标为.
①若点的横坐标为,点与点重合,则点、的“涵矩形”的周长为__________.
②若点,的“涵矩形”的周长为,点的坐标为,则点,,中,能够成为点、的“涵矩形”的顶点的是_________.
(2)四边形是点、的“涵矩形”,点在的内部,且它是正方形.
①当正方形的周长为,点的横坐标为时,求点的坐标.
②当正方形的对角线长度为时,连结.直接写出线段的取值范围.
17、(10分)如图,在平面直角坐标系中,直线与轴交于点,与双曲线在第二象限内交于点(-3,).
⑴求和的值;
⑵过点作直线平行轴交轴于点,连结AC,求△的面积.
18、(10分)如图,在平行四边形ABCD中,O是AB的中点,连接DO并延长交CB的延长线于点E,连接AE、DB.
(1)求证:△AOD≌△BOE;
(2)若DC=DE,判断四边形AEBD的形状,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一组数据为0,1,2,3,4,则这组数据的方差是_____.
20、(4分)如图,点P是平面坐标系中一点,则点P到原点的距离是_____.
21、(4分)在平面直角坐标系中,已知点在第二象限,那么点在第_________象限.
22、(4分)已知一次函数y=ax+b的图象经过点(﹣2,0)和点(0,﹣1),则不等式ax+b>0的解集是_____.
23、(4分)如图,OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,且PE=6cm,则点P到OB的距离是___cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图所示,四边形ABCD是平行四边形,已知DE平分∠ADC,交AB于点E,过点E作EF∥AD,交DC于F,求证:四边形AEFD是菱形.
25、(10分)某校八年级同学参加社会实践活动,到“庐江农民创业园”了解大棚蔬菜生长情况.他们分两组对西红柿的长势进行观察测量,分别收集到10株西红柿的高度,记录如下(单位:厘米)
第一组:32 39 45 55 60 54 60 28 56 41
第二组:51 56 44 46 40 53 37 47 50 46
根据以上数据,回答下列问题:
(1)第一组这10株西红柿高度的平均数是 ,中位数是 ,众数是 .
(2)小明同学计算出第一组方差为S12=122.2,请你计算第二组方差,并说明哪一组西红柿长势比较整齐.
26、(12分)为贯彻党的“绿水青山就是金山银山”的理念,我市计划购买甲、乙两种树苗共7000株用于城市绿化,甲种树苗每株24元,一种树苗每株30元相关资料表明:甲、乙两种树苗的成活率分别为、.
若购买这两种树苗共用去180000元,则甲、乙两种树苗各购买多少株?
若要使这批树苗的总成活率不低于,则甲种树苗至多购买多少株?
在的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据菱形、矩形、平行四边形、正方形的判定定理逐项判断即可.
【详解】
解:A. 对角线互相垂直的平行四边形是菱形,此选项不符合题意;
B. 对角形相等的平行四边形是矩形,此选项不符合题意;
C. 顺次连结平行四边形各边中点所得四边形是平行四边形 ,此选项符合题意;
D. 一组邻边相等的矩形是正方形,此选项不符合题意;
故选:C.
本题考查的知识点是菱形、矩形、平行四边形、正方形的判定定理,熟记菱形、矩形、平行四边形、正方形的判定定理内容是解此题的关键.
2、D
【解析】
根据函数图象判断即可.
【详解】
解:明明从家到食堂的平均速度为:0.6÷8=0.075km/min,①正确;食堂离图书馆的距离为:0.8-0.6=0.2km,②正确;明明看书的时间:58-28=30min,③正确;明明从图书馆回家的平均速度是:0.8÷(68-58)=0.08km/min,④正确.故选D.
本题考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.
3、D
【解析】
根据一次函数的系数结合一次函数的性质,即可得出选项B、C两选项不正确;再分别代入x=-2,y=0,求出相对于的y和x的值,即可得出选项A不正确,选项D正确.
【详解】
选项A,令y=-2x+1中x=-2,则y=5,
∴一次函数的图象不过点(-2,1),选项A不正确;
选项B,∵k=-2<0,b=1>0,
∴一次函数的图象经过第一、二、四象限,选项B不正确;
选项C,∵k=-2<0,
∴一次函数中y随x的增大而减小,选项C不正确;
选项D,∵令y=-2x+1中y=0,则-2x+1=0,解得:x= ,
∴当x>时,y<0,选项D正确.
故选D.
本题考查了一次函数的图象以及一次函数的性质,熟练运用一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.
4、A
【解析】
根据分式的基本性质逐项判断即得答案.
【详解】
解:A、由分式的基本性质可知:≠,所以本选项符合题意;
B、=,变形正确,所以本选项不符合题意;
C、=-,变形正确,所以本选项不符合题意;
D、,变形正确,所以本选项不符合题意.
故选:A.
本题考查了分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.
5、C
【解析】
判断出笑脸盖住的点在第三象限,再根据第三象限内点的坐标特征解答.
【详解】
由图可知,被笑脸盖住的点在第三象限,
(5,2),(−5,2),(−5,−2),(5,−2)四个点只有(−5,−2)在第三象限.
故选:C.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
6、D
【解析】
分两种情况讨论:72度为顶角或为底角,依次计算即可.
【详解】
分两种情况:
①72度为顶角时,答案是72°;
②72度为底角时,则顶角度数为180°-72×2=36°.
故选D.
本题主要考查了等腰三角形的性质,已知提供的度数并没有说明其为底角还是顶角,所以需要分类讨论解决.
7、C
【解析】
根据正比例函数的性质,直接将坐标代入,即可判定是否符合题意.
【详解】
A选项坐标代入,得,错误;
B选项坐标代入,得,错误;
C选项坐标代入,得,正确;
D选项坐标代入,得,错误;
故答案为C.
此题主要考查正比例函数的性质,熟练掌握,即可解题.
8、C
【解析】
BC是斜边,则∠A=90°,利用三角形内角和定理即可求出∠C.
【详解】
∵BC是斜边
∴∠A=90°
∴∠C=180°-90°-40°=50°
故选C.
本题考查三角形内角和定理,根据BC是斜边得出∠A是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
由题意可得3-2x=1,
解得x=,
又∵2+3x≠1,
解得x=.
此题考查分式的值为零的条件,解题关键在于掌握运算法则
10、1和2.
【解析】
先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.
【详解】
去分母得,2(x+4) >3(3x−1)-6,
去括号得,2x+8>9x-3-6,
移项得,2x−9x>-3-6−8,
合并同类项得,−7x>−17,
把x的系数化为1得,x< .
故它的正整数解为:1和2.
此题考查解一元一次不等式,一元一次不等式的整数解,解题关键在于掌握运算法则
11、
【解析】
需要分类讨论:以AB为该平行四边形的边和对角线两种情况.
【详解】
解:如图,①当AB为该平行四边形的边时,AB=OC,
∵点A(1,1),B(-1,1),O(0,0)
∴点C坐标(-2,0)或(2,0)
②当AB为该平行四边形的对角线时,C(0,2).
故答案是:(-2,0)或(2,0)或(0,2).
本题考查了平行四边形的性质和坐标与图形性质.解答本题关键要注意分两种情况进行求解.
12、1
【解析】
分析:根据角平分线的性质求出∠DAC=10°,根据直角三角形的性质得出CD的长度,最后根据角平分线的性质得出DE的长度.
详解:∵∠BAC=60°,AD平分∠BAC, ∴∠DAC=10°, ∵AD=6, ∴CD=1,
又∵DE⊥AB, ∴DE=DC=1.
点睛:本题主要考查的是直角三角形的性质以及角平分线的性质,属于基础题型.合理利用角平分线的性质是解题的关键.
13、或.
【解析】
分式方程无解的两种情况是:1.分式方程去分母化为整式方程,整式方程无解;2.整式方程的解使分式方程分母为零.据此分析即可.
【详解】
解:方程两边同时乘以(2x﹣3),得:
x+4m=m(2x﹣3),整理得:
(2m﹣1)x=7m
①当2m﹣1=0时,整式方程无解,m=
②当2m﹣1≠0时,x=,x=时,原分式方程无解;
即,解得m=
故答案为:或.
本题考查了分式方程的解,解决本题的关键是明确分式方程无解的条件几种情况,然后再分类讨论.
三、解答题(本大题共5个小题,共48分)
14、 (1)每本故事书需涨5元;(2)每本故事书的售价应不高于60元.
【解析】
(1)设每本故事书需涨价x元,按每本故事书50元进行出售,每月可以售出500本故事书,调查发现每涨1元,少卖20本,根据总利润=(售价-进价)×数量,列方程求解即可;
(2)设每本故事书的售价为m元,根据在50元售价的基础上每涨1元,少卖20本,可得关于m的不等式,解不等式即可求得答案.
【详解】
(1)设每本故事书需涨价x元,由题意则有
(x+50-40)(500-20x)=6000,
解得:,,
为了让购书者得到实惠,x=10应舍去,
故x=5,
答:每本故事书需涨5元;
(2)设每本故事书的售价为m元,则
500-20(m-50)≥300,
解得:m≤60,
答:每本故事书的售价应不高于60元.
本题考查了一元二次方程的应用,一元一次不等式的应用,弄清题意,找准等量关系,不等关系列出方程或不等式是解题的关键.
15、
【解析】
把A(0,-3),B(1,2)代入y=kx+b,利用待定系数法即可求出直线的表达式
【详解】
设,
将(0,-3)(1,2)代入得,
解得,
.
本题考查了一次函数式,利用待定系数法求出直线的表达式是解题的关键.
16、(1)①. ②;(2)①点的坐标为或.②.
【解析】
(1)①利用A、B的坐标求出直线AB的解析式,再将P点横坐标代入,计算即可得点、的“新矩形”的周长;②由直线AB的解析式判定是否经过E、F、G三点,发现只经过了F(1,2),能够成为点、的“涵矩形”的顶点的是F(1,2)
(2)①①根据正方形的性质可得出∠ABO=45°,结合点A的坐标可得出点B的坐标及直线AB的函数表达式,由的横坐标为,可得出点P的坐标,再由正方形的周长可得出点Q的坐标,进而可得出点Q的坐标;②由正方形的对角线长度为,可得正方形的边长为1,由直线AB的解析式y=-x+6可知M点的运动轨迹是直线y=-x+5,由点在的内部,x的取值范围是0
相关试卷
这是一份2024-2025学年湖北省广水市城郊街道办事处中学九年级数学第一学期开学检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖北省随州市广水市九年级中考模拟数学试题,共4页。
这是一份湖北省随州市广水市2023—2024学年上学期期末质量监测九年级数学试题+,共12页。