![2025届湖北省武汉第二初级中学九年级数学第一学期开学复习检测模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16232253/0-1728462131093/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届湖北省武汉第二初级中学九年级数学第一学期开学复习检测模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16232253/0-1728462131191/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届湖北省武汉第二初级中学九年级数学第一学期开学复习检测模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16232253/0-1728462131224/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届湖北省武汉第二初级中学九年级数学第一学期开学复习检测模拟试题【含答案】
展开
这是一份2025届湖北省武汉第二初级中学九年级数学第一学期开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)顺次连接矩形四边中点得到的四边形一定是( )
A.正方形B.矩形C.菱形D.不确定,与矩形的边长有关
2、(4分)如图:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD= ( )
A.4B.3
C.2D.1
3、(4分)如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )
A.3cmB.4cmC.5cmD.6cm
4、(4分)如图,矩形中,,,点从点出发,沿向终点匀速运动,设点走过的路程为,的面积为,能正确反映与之间函数关系的图象是( )
A. B. C. D.
5、(4分)如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是( ).
A.B.
C.D.
6、(4分)如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是( )
A.B.C.D.
7、(4分)如图,在菱形ABCD中,一动点P从点B出发,沿着B→C→D→A的方向匀速运动,最后到达点A,则点P在匀速运动过程中,△APB的面积y随时间x变化的图象大致是( )
A.B.
C.D.
8、(4分)如图是一次函数y=x-3的图象,若点P(2,m)在该直线的上方,则m的取值范围是( )
A.m>-3B.m>0C.m>-1D.m > -2的解集是_________
21、(4分)为了增强青少年的防毒拒毒意识,学校举办了一次“禁毒教育”演讲比赛,其中某位选手的演讲内容、语言表达、演讲技巧这三项得分分别为90分,80分,85分,若依次按50%,30%,20%的比例确定成绩,则该选手的最后得分是__________分.
22、(4分)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC边上的F点处.已知折痕,且,那么该矩形的周长为______cm.
23、(4分)甲、乙两人进行射击测试,每人20次射击的平均成绩恰好相等,且他们的标准差分别是S甲=1.8,S乙=0.1.在本次射击测试中,甲、乙两人中成绩较为稳定的是_____.(填:甲或乙)
二、解答题(本大题共3个小题,共30分)
24、(8分)对于某一函数给出如下定义:若存在实数,当其自变量的值为时,其函数值等于,则称为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度为零.例如,图1中的函数有0,1两个不变值,其不变长度等于1.
(1)分别判断函数,有没有不变值?如果有,请写出其不变长度;
(2)函数且,求其不变长度的取值范围;
(3)记函数的图像为,将沿翻折后得到的函数图像记为,函数的图像由和两部分组成,若其不变长度满足,求的取值范围.
25、(10分)如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.
求证:DF∥AC.
26、(12分)阅读理解题
在平面直角坐标系中,点到直线的距离公式为:,
例如,求点到直线的距离.
解:由直线知:
所以到直线的距离为:
根据以上材料,解决下列问题:
(1)求点到直线的距离.
(2)若点到直线的距离为,求实数的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据三角形的中位线平行于第三边,且等于第三边的一半求解.需注意新四边形的形状只与对角线有关,不用考虑原四边形的形状.
【详解】
如图,连接AC、BD.
在△ABD中,
∵AH=HD,AE=EB,
∴EH=BD,
同理FG=BD,HG=AC,EF=AC,
又∵在矩形ABCD中,AC=BD,
∴EH=HG=GF=FE,
∴四边形EFGH为菱形.
故选:C.
本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.
2、C
【解析】
作PE⊥OB于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠BCP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.
【详解】
作PE⊥OB于E,
∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,
∴PE=PD,
∵PC∥OA,
∴∠BCP=∠AOB=2∠BOP=30°
∴在Rt△PCE中,PE=PC=×4=2,
故选C.
本题考查角平分线的性质、含30度角的直角三角形和三角形的外角性质,解题的关键是掌握角平分线的性质、含30度角的直角三角形和三角形的外角性质.
3、A
【解析】
分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.
详解:设CN=xcm,则DN=(8﹣x)cm,
由折叠的性质知EN=DN=(8﹣x)cm,
而EC=BC=4cm,
在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,
即(8﹣x)2=16+x2,
整理得16x=48,
所以x=1.
故选:A.
点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.
4、C
【解析】
首先判断出从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);然后判断出从点C到点D,△ABP的底AB的长度一定,高都等于BC的长度,所以△ABP的面积一定,y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),进而判断出△ABP的面积y与点P运动的路程x之间的函数图象大致是哪一个即可.
【详解】
解:从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);
因为从点C到点D,△ABP的面积一定:2×1÷2=1,
所以y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),
所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:
.
故选:C.
此题主要考查了动点函数的应用,注意将函数分段分析得出解析式是解决问题的关键.
5、A
【解析】
试题分析:分两种情况:①当0≤t<4时,作OG⊥AB于G,如图1所示,由正方形的性质得出∠B=90°,AD=AB=BC=4cm,AG=BG=OG=AB=2cm,由三角形的面积得出S=AP•OG=t();②当t≥4时,作OG⊥AB于G,如图2所示,S=△OAG的面积+梯形OGBP的面积=×2×2+(2+t﹣4)×2=t();综上所述:面积S()与时间t(s)的关系的图象是过原点的线段.
故选A.
考点:动点问题的函数图象.
6、B
【解析】
如图,过点E作EM⊥BC于点M,EN⊥AB于点N,
∵点E是正方形的对称中心,∴EN=EM,EMBN是正方形.
由旋转的性质可得∠NEK=∠MEL,
在Rt△ENK和Rt△EML中,
∠NEK=∠MEL,EN=EM,∠ENK=∠EML,
∴△ENK≌△ENL(ASA).
∴阴影部分的面积始终等于正方形面积的,即它们重叠部分的面积S不因旋转的角度θ的改变而改变.故选B.
7、D
【解析】
分析动点P在BC、CD、DA上时,△APB的面积y随x的变化而形成变化趋势即可.
【详解】
解:当点P沿BC运动时,△APB的面积y随时间x变化而增加,当点P到CD上时,△APB的面积y保持不变,当P到AD上时,△APB的面积y随时间x增大而减少到1.
故选:D.
本题为动点问题的图象探究题,考查了函数问题中函数随自变量变化而变化的关系,解答时注意动点到达临界点前后函数图象的变化.
8、C
【解析】
把x=2代入直线的解析式求出y的值,再根据点P(2,m)在该直线的上方即可得出m的取值范围.
【详解】
当x=2时,y=2-3=-1,
∵点P(2,m)在该直线的上方,
∴m>-1.
故选C.
本题考查了一次函数图象上点的坐标特点,根据题意求出当x=2时y的值是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、或
【解析】
已知,可根据有一组边平行且相等的四边形是平行四边形来判定,也可根据两组对边分别平行的四边形是平行四边形来判定.
【详解】
在四边形ABCD中,,
可添加的条件是:,
四边形ABCD是平行四边形一组对边平行且相等的四边形是平行四边形.
在四边形ABCD中,,
可添加的条件是:,
四边形ABCD是平行四边形两组对边分别的四边形是平行四边形.
故答案为或.(答案不唯一,只要符合题意即可)
本题主要考查了平行四边形的判定方法,常用的平行四边形的判定方法有:两组对边分别平行的四边形是平行四边形两组对边分别相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形两组对角分别相等的四边形是平行四边形对角线互相平分的四边形是平行四边形.
10、南偏东30°
【解析】
直接得出AP=12 n mile,PB=16 n mile,AB=20 n mile,利用勾股定理逆定理以及方向角得出答案.
【详解】
如图,
由题意可得:AP=12 n mile,PB=16 n mile,AB=20 n mile,
∵122+162=202,
∴△APB是直角三角形,
∴∠APB=90°,
∵“远洋”号沿着北偏东60°方向航行,
∴∠BPQ=30°,
∴“长峰”号沿南偏东30°方向航行;
故答案为南偏东30°.
此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.
11、1
【解析】
由条件可证明四边形HPFD、BEPG为平行四边形,可证明S四边形AEPH=S四边形PFCG.,再利用面积的和差可得出四边形AEPH和四边形PFCG的面积相等,由已知条件即可得出答案.
【详解】
解:∵EF∥BC,GH∥AB,
∴四边形HPFD、BEPG、AEPH、CFPG为平行四边形,
∴S△PEB=S△BGP,
同理可得S△PHD=S△DFP,S△ABD=S△CDB,
∴S△ABD-S△PEB-S△PHD=S△CDB-S△BGP-S△DFP,
即S四边形AEPH=S四边形PFCG.
∵CG=2BG,S△BPG=1,
∴S四边形AEPH=S四边形PFCG=1×1=1;
故答案为:1.
本题主要考查平行四边形的判定和性质,掌握平行四边形的判定和性质是解题的关键,即①两组对边分别平行⇔四边形为平行四边形,②两组对边分别相等⇔四边形为平行四边形,③一组对边平行且相等⇔四边形为平行四边形,④两组对角分别相等⇔四边形为平行四边形,⑤对角线互相平分⇔四边形为平行四边形.
12、1
【解析】
直接利用矩形的性质结合勾股定理得出EF,FG,EH,HG的长即可得出答案.
【详解】
∵矩形ABCD的长和宽分别为4和3,E、F、G、H依次是矩形ABCD各边的中点,
∴AE=BE=CG=DG=1.5,AH=DH=BF=FC=2,
∴EH=EF=HG=GF=,
∴四边形EFGH的周长等于4×2.5=1
故答案为1.
此题主要考查了中点四边形以及勾股定理,正确应用勾股定理是解题关键.
13、2016
【解析】
由题意可得,
,
,
∵,为方程的个根,
∴,
,
∴.
三、解答题(本大题共5个小题,共48分)
14、(1)y=2x(0≤x≤20),y=2.5x﹣10(x>20);(2)5月份用水1吨,6月份用水量为30吨.
【解析】
(1)分别根据:未超过20吨时,水费y=2×相应吨数;超过20吨时,水费y=2×20+超过20吨的吨数×2.5;列出函数解析式;
(2)设该户居民5月份用水x吨,则6月份用水量为(45﹣m)吨,然后依据两个月共交水费95元列方程求解即可.
【详解】
解:(1)当0≤x≤20时,y=2x;
当x>20时,y=2×20+2.5(x﹣20)=2.5x﹣10;
(2)设该户居民5月份用水x吨,则6月份用水量为(45﹣m)吨,.
根据题意,得:2m+2.5(45﹣m)﹣10=95,
解得:m=1.
答:该户居民5月份用水1吨,6月份用水量为30吨.
故答案为(1)y=2x(0≤x≤20),y=2.5x﹣10(x>20);(2)5月份用水1吨,6月份用水量为30吨.
本题考查了一次函数的应用、一元一次方程的应用;得到用水量超过20吨的水费的关系式是解决本题的关键.
15、(1);(2)如图所示见解析.
【解析】
1直接利用速度时间路程进而得出答案;
2直接利用正比例函数图象画法得出答案.
【详解】
(1)由题意可得:;
(2)如图所示:
考查了一次函数的应用,正确得出函数关系式是解题关键.
16、当时,一边长为8的直角三角形另两边的长分别为15,1.
【解析】
分情况讨论:当 时,利用计算出m,然后分别计算出y和z;当时,利用,解得,不合题意舍去;当时,利用求出,不合题意舍去,从而得到当时,一边长为8的直角三角形另两边的长.
【详解】
分三种情况:
当 时,
,
解得,舍去,
,
;
当时,
,解得
而m为奇数,所以舍去;
当时,
,解得,而m为奇数
舍去,
综上所述,当时,一边长为8的直角三角形另两边的长分别为15,1.
考查了勾股数:满足的三个正整数,称为勾股数记住常用的勾股数再做题可以提高速度.
17、2
【解析】
首先对前两个式子进行同分,并对每个分式进行分解因式,乘以后面分式的倒数,并进行约分即可.
【详解】
解:当x=时,
∴原式=
=,
=2.
本题主要考查分式的四则运算,注意通分及约分正确即可,最终的式子保证最简形式.
18、.
【解析】
由BD=CD可得∠DBC=∠C=70°,由平行四边形的性质可得AD∥BC,从而有∠ADB=∠DBC=70°,继而在直角△AED中,根据直角三角形两锐角互余即可求得答案.
【详解】
,
,
在中,,
,
于点,
,
.
本题考查了平行四边形的性质,等边对等角,直角三角形两锐角互余等知,熟练掌握相关知识是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、丙
【解析】
根据方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定解答即可.
【详解】
解:因为3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,
丙的方差最小,所以这10次测试成绩比较稳定的是丙,
故答案为:丙
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
20、
【解析】
解:由于直线过点A(0,2),P(1,m),
则,解得,
,
故所求不等式组可化为:
mx>(m-2)x+2>mx-2,
0>-2x+2>-2,
解得:1<x<2,
21、1
【解析】
根据加权平均数的计算公式列出算式,再进行计算即可得出答案.
【详解】
解:根据题意得:
90×50%+80×30%+85×20%
=45+24+17
=1(分).
答:该选手的最后得分是1分.
故答案为:1.
本题考查了加权平均数的求法.本题易出现的错误是求90,80,85这三个数的平均数,对平均数的理解不正确.
22、72
【解析】
根据矩形的性质可得AB=CD,AD=BC,∠B=∠D=90°,再根据翻折变换的性质可得∠AFE=∠D=90°,AD=AF,然后根据同角的余角相等求出∠BAF=∠EFC,然后根据,设CE=3k,CF=4k,推出EF=DE=5k,AB=CD=8k,利用相似三角形的性质求出BF,再在Rt△ADE中,利用勾股定理构建方程即可解决问题.
【详解】
解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,
∵△ADE沿AE对折,点D的对称点F恰好落在BC上,
∴∠AFE=∠D=90°,AD=AF,
∵∠EFC+∠AFB=180°-90°=90°,
∠BAF+∠AFB=90°,
∴∠BAF=∠EFC,
∵,
∴设CE=3k,CF=4k,
∴,
∵∠BAF=∠EFC,且∠B=∠C=90°
∴△ABF∽△FCE,
∴,即,
∴BF=6k,
∴BC=BF+CF=10k=AD,
∵AE2=AD2+DE2,
∴500=100k2+25k2,
∴k=2
∴AB=CD =16cm,BC=AD=20cm,
∴四边形ABCD的周长=72cm
故答案为:72.
本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.
23、乙
【解析】
根据标准差的意义求解可得.标准差越小,稳定性越好.
【详解】
解:∵S甲=1.8,S乙=0.1,
∴S甲>S乙,
∴成绩较稳定的是乙.
故答案为:乙.
本题考查标准差的意义标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标标准差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
二、解答题(本大题共3个小题,共30分)
24、(1)不存在不变值;存在不变值,q=3;(2)0≤q≤2;(3)≤m≤4 或m<-0.2.
【解析】
(1)由题意得:y=x-3=x,无解,故不存在不变值;y=x2-2=x,解得:x=2或-1,即可求解;
(2)由题意得:y=x2-bx+1=x,解得:x= ,即可求解;
(3)由题意得:函数G的不变点为:2m-1+ 、2m-1- 、0、4;分x=m为G1的左侧、x=m为G1的右侧,两种情况分别求解即可.
【详解】
解:(1)由题意得:y=x-3=x,无解,故不存在不变值;
y=x2-2=x,解得:x=2或-1,故存在不变值,q=2-(-1)=3;
(2)由题意得:y=x2-bx+1=x,
解得:x=,
q=,1≤b≤3,
解得:0≤q≤2;
(3)由题意得:y=x2-3x沿x=m对翻折后,
新抛物线的顶点为(2m-,-),
则新函数G2的表达式为:y=x2-(4m-3)x+(4m2-6m),
当y=x时,整理得:x2-(4m-2)x+(4m2-6m)=0,
x=2m-1±,
即G2的不变点是2m-1+和2m-1-;
G1的不变点是:0和4;
故函数G的不变点为:2m-1+、2m-1-、0、4,
这4个不变点最大值的可能是2m-1+、4,最小值可能2m-1-、0,
----当x=m为G1对称轴x=的左侧时,
①当最大值为2m-1+时,
当最小值为2m-1-时,
即:0≤2m-1+-(2m-1-)≤4,
解得:0≤m≤;
当最小值为0时,
同理可得:0≤m≤;
②当最大值为4时,
最小值为2m-1-即可(最小值为0,符合条件),
即0≤4-(2m-1-)≤4,
解得:m=;
综上:0≤m≤;
----当x=m为G1对称轴x=的右侧时,
同理可得:≤m≤;
故:≤m≤4 或m<-0.2.
本题考查的是二次函数综合运用,涉及到方程和不等式的求解,其中(3),不等式求解难度非常大,并要注意分类求解,避免遗漏.
25、见解析;
【解析】
连接BD交AC于点O,根据平行四边形的性质证明即可.
【详解】
连接BD交AC于点O.
∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.
本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.
26、(1)1;(2)1或-3.
【解析】
(1)根据点到直线的距离公式求解即可;
(2)根据点到直线的距离公式,列出方程即可解决问题.
【详解】
解:由直线知:A=3,B=-4,C=-5,
∴点到直线的距离为:
d=;
(2)由点到直线的距离公式得:
∴|1+C|=2
解得:C=1或-3.
点睛:本题考查点到直线的距离公式的运用,解题的关键是理解题意,学会把直线的解析式转化为Ax+By+C=0的形式,学会构建方程解决问题.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024年武汉市第二初级中学数学九年级第一学期开学经典试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年武汉市第二初级中学九上数学开学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖北省武汉市第十四中学九年级数学第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)