开学活动
搜索
    上传资料 赚现金

    2025届湖北省襄阳市襄州区数学九上开学调研模拟试题【含答案】

    2025届湖北省襄阳市襄州区数学九上开学调研模拟试题【含答案】第1页
    2025届湖北省襄阳市襄州区数学九上开学调研模拟试题【含答案】第2页
    2025届湖北省襄阳市襄州区数学九上开学调研模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届湖北省襄阳市襄州区数学九上开学调研模拟试题【含答案】

    展开

    这是一份2025届湖北省襄阳市襄州区数学九上开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)正方形、、…按如图所示的方式放置.点、、…和点、、…别在直线和轴上,则点的坐标是( )
    A.B.C.D.
    2、(4分)下列各组数是勾股数的是( )
    A.6,7,8B.1,,2
    C.5,4,3D.0.3,0.4,0.5
    3、(4分)如图,在平面直角坐标系中,为,,与轴重合,反比例函数的图象经过中点与相交于点,点的横坐标为,则的长( )
    A.B.C.D.
    4、(4分)如图,四边形和四边形是以点为位似中心的位似图形,若,四边形的面积等于4,则四边形的面积为( )
    A.3B.4C.6D.9
    5、(4分)在平面直角坐标系中,点A的坐标为(﹣3,4),那么下列说法正确的是( )
    A.点A与点B(﹣3,﹣4)关于y轴对称
    B.点A与点C(3,﹣4)关于x轴对称
    C.点A与点E(﹣3,4)关于第二象限的平分线对称
    D.点A与点F(3,﹣4)关于原点对称
    6、(4分)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是( )
    A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度
    C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度
    7、(4分)如图,正方形ABCD的边长是3cm,一个边长为1cm的小正方形从图示位置开始,沿着正方形ABCD的边AB→BC→CD→DA→AB连续地翻转,那么这个小正方形第2018次翻转到箭头与初始位置相同的方向时,小正方形所处的位置( )
    A.在AB边上B.在BC边上C.在CD边上D.在DA边上
    8、(4分)下列命题是假命题的是( )
    A.两直线平行,同位角相等B.两组对角分别相等的四边形是平行四边形
    C.若,则D.若,则
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知直角三角形的两条边为5和12,则第三条边长为__________.
    10、(4分)如图,在等腰梯形 ABCD 中,AD∥BC,如果 AD=4,BC=8 ,∠B =60° ,那么这个等腰梯形的腰 AB 的长等于____.
    11、(4分)一个有进水管和出水管的容器,从某时刻开始4 min内只进水不出水,在随后的8 min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为________________
    12、(4分)若m2﹣n2=6,且m﹣n=2,则m+n=_________
    13、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B5的坐标是_____________ 。
    三、解答题(本大题共5个小题,共48分)
    14、(12分)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过1元后,超出1元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>1.
    (1)根据题题意,填写下表(单位:元)
    (2)当x取何值时,小红在甲、乙两商场的实际花费相同?
    (3)当小红在同一商场累计购物超过1元时,在哪家商场的实际花费少?
    15、(8分)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.
    (1)求每台电冰箱与空调的进价分别是多少?
    (2)现在商城准备一次购进这两种家电共100台,设购进电冰箱台,这100台家电的销售总利润为元,要求购进空调数量不超过电冰箱数量的2倍,试确定获利最大的方案以及最大利润.
    16、(8分)在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为个单位长度,按要求作图:
    ①画出关于原点的中心对称图形;
    ②画出将绕点逆时针旋转得到
    ③请在网格内过点画一条直线将平分成两个面积相等的部分.
    17、(10分)如图,在▱ABCD中,各内角的平分线分别相交于点E,F,G,H.
    (1)求证:△ABG≌△CDE;
    (2)猜一猜:四边形EFGH是什么样的特殊四边形?证明你的猜想;
    (3)若AB=6,BC=4,∠DAB=60°,求四边形EFGH的面积.
    18、(10分)如图,在ABCD中,点E,F分别在BC,AD上,且BE=FD,求证:四边形AECF是平行四边形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一次函数y=mx﹣4中,若y随x的增大而减小,则m的取值范围是_____﹣
    20、(4分)如图,在四边形ABCD中,∠DBC=90°,∠ABD=30°,∠ADB=75°,AC与BD交于点E,若CE=2AE=4,则DC的长为________.
    21、(4分)如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=,∠AEO=120°,则FC的长度为_____.
    22、(4分)已知一次函数()经过点,则不等式的解集为__________.
    23、(4分)分解因式:____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.
    (1)求证:四边形DEGF是平行四边形;
    (2)当点G是BC的中点时,求证:四边形DEGF是菱形.
    25、(10分)若关于的一元二次方程有实数根,.
    (1)求实数的取值范围;
    (2)设,求的最小值.
    26、(12分)如图,四边形ABCD是正方形,E、F分别是AB和AD延长线上的点,BE=DF,在此图中是否存在两个全等的三角形,并说明理由;它们能够由其中一个通过旋转而得到另外一个吗?简述旋转过程.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    利用一次函数图象上点的坐标特征及正方形的性质可得出点的坐标,根据点的坐标的变化可找出变化规律“点的坐标为(n为正整数)”,再代入n=2019即可得出的坐标,然后再将其横坐标减去纵坐标得到的横坐标,和的纵坐标相同.
    【详解】
    解:当时,,
    ∴点A1的坐标为(0,1).
    ∵四边形A1B1C1O为正方形,
    ∴点B1的坐标为(1,1),点C1的坐标为(1,0).
    当时,,
    ∴点A2的坐标为(1,2).
    ∵A2B2C2C1为正方形,
    ∴点B2的坐标为(3,2),点C2的坐标为(3,0).
    同理,可知:点B3的坐标为(7,4),点B4的坐标为(15,8),点B5的坐标为(31,16),…,
    ∴点的坐标为(n为正整数),
    ∴点的坐标为 ,
    ∴点的坐标为,即为 .
    故选:B.
    本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律是解题的关键.
    2、C
    【解析】
    欲求证是否为勾股数,这里给出三边的长,只要验证即可.
    【详解】
    解:、,故此选项错误;
    、不是整数,故此选项错误;
    、,故此选项正确;
    、0.3,0.4,0.5,勾股数为正整数,故此选项错误.
    故选:.
    本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.
    3、B
    【解析】
    把E点的横坐标代入,确定E的坐标,根据题意得到B的坐标为(2,4),把B的横坐标代入求得D的纵坐标,就可求得AD,进而求得BD.
    【详解】
    解:反比例函数的图象经过OB中点E,E点的横坐标为1,

    ∴E(1,2),
    ∴B(2,4),
    ∵△OAB为Rt△,∠OAB=90°,
    ∴AB=4,
    把x=2代入得,
    ∴AD=1,
    ∴BD=AB-AD=4-1=3,
    故选:B.
    此题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、三角形中位线性质,解题的关键是求得B、D的纵坐标.
    4、D
    【解析】
    利用位似的性质得到AD:A'D'=OA:OA'=2:3,再利用相似多边形的性质得到得到四边形A'B'C'D'的面积.
    【详解】
    解:∵四边形ABCD和四边形A'B'C'D'是以点O为位似中心的位似图形,AD:A'D'=OA:04'=2:3,
    ∴四边形ABCD的面积:四边形A'B'C'D'的面积=4:9,
    又∵四边形ABCD的面积等于4,
    ∴四边形A'B'C'D'的面积为9.
    故选:D
    本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫位似中心,注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行(或共线)
    5、D
    【解析】
    根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反;关于第二象限角平分线的对称的两点坐标的关系,纵横坐标交换位置且变为相反数可得答案.
    【详解】
    解:A、点A的坐标为(-3,4),∴则点A与点B(-3,-4)关于x轴对称,故此选项错误;
    B、点A的坐标为(-3,4),∴点A与点C(3,-4)关于原点对称,故此选项错误;
    C、点A的坐标为(-3,4),∴点A与点E(-3,4)重合,故此选项错误;
    D、点A的坐标为(-3,4),∴点A与点F(3,-4)关于原点对称,故此选项正确;
    故选D.
    此题主要考查了关于xy轴对称点的坐标点的规律,以及关于原点对称的点的坐标特点,关键是熟练掌握点的变化规律,不要混淆.
    6、A
    【解析】
    利用一次函数图象的平移规律,左加右减,上加下减,得出即可.
    【详解】
    ∵将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,
    ∴-2(x+a)-2=-2x+4,
    解得:a=-3,
    故将l1向右平移3个单位长度.
    故选A.
    此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.
    7、C
    【解析】
    由正方形ABCD的边长是3cm,小正方形的边长为1cm,则小正方形在正方形ABCD每条边上翻转两次,每个直角处翻转一次,小正方形共翻转12次回到原来的位置,即可得到它的方向.
    【详解】
    ∵正方形ABCD的边长是3cm,小正方形的边长为1cm,
    ∴小正方形在正方形ABCD每条边上翻转两次,每个直角处翻转一次,小正方形翻转12次回到原来的位置,
    ∴2018÷12=它的方向为B选项所指的方向.
    故选C.
    本题主要利用正方形为背景考查了规律探索,解决这类问题的方法一般是先求解一部分情况,从特殊到一般而后发现规律拓展推广.
    8、D
    【解析】
    根据平行线的性质、平行四边形的判定、实数的性质即可判断.
    【详解】
    A. 两直线平行,同位角相等,正确
    B. 两组对角分别相等的四边形是平行四边形,正确
    C. 若,则,正确
    D. 若>0,则,错误
    故选D.
    此题主要考查命题的真假,解题的关键是熟知根据平行线的性质、平行四边形的判定、实数的性质.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1或
    【解析】
    因为不确定哪一条边是斜边,故需要讨论:①当12为斜边时,②当12是直角边时,根据勾股定理,已知直角三角形的两条边就可以求出第三边.
    【详解】
    解:①当12为斜边时,则第三边==;
    ②当12是直角边时,第三边==1.
    故答案为:1或.
    本题考查了勾股定理的知识,难度一般,但本题容易漏解,在不确定斜边的时候,一定不要忘记讨论哪条边是斜边.
    10、4
    【解析】
    过A作AE∥DC,可得到平行四边形AECD,从而可求得BE的长,由已知可得到△ABE是等边三角形,此时再求AB就不难求得了.
    【详解】
    借钱:过作AE∥DC,交BC于E,
    在等腰梯形ABCD中,AD∥BC,
    ∴四边形AECD是平行四边形
    ∴AB=AE,CE=AD=4
    ∵∠B=60°,AB=AE,
    ∴△ABE是等边三角形,
    ∴AB=BE
    ∵BE=BC-EC=8-4=4
    ∴AB=4.
    故答案为:4
    本题考查平行四边形的性质和等边三角形的判定与性质.
    11、L
    【解析】
    由前4分钟的进水量求得每分钟的进水量,后8分钟的进水量求得每分钟的出水量.
    【详解】
    前4分钟的每分钟的进水量为20÷4=5,
    每分钟的出水量为5-(30-20)÷8=.
    故答案为L.
    从图象中获取信息,首先要明确两坐标轴的实际意义,抓住交点,起点,终点等关键点,明确函数图象的变化趋势,变化快慢的实际意义.
    12、3
    【解析】
    利用平方差公式得到(m+n)(m-n)=6,然后把m-n=2代入计算即可.
    【详解】
    ∵,
    ∴m+n=3.
    13、(31,16)
    【解析】
    首先由B1的坐标为(1,1),点B2的坐标为(3,2),可得正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,即可求得A1的坐标是(0,1),A2的坐标是:(1,2),然后又待定系数法求得直线A1A2的解析式,由解析式即可求得点A3的坐标,继而可得点B3的坐标,观察可得规律Bn的坐标是(2n-1,2n-1).
    【详解】
    ∵B1的坐标为(1,1),点B2的坐标为(3,2)
    ∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2
    ∴A1的坐标是(0,1),A2的坐标是:(1,2)
    设直线A1A2的解析式为:y=kx+b

    解得:
    ∴直线A1A2的解析式是:y=x+1
    ∵点B2的坐标为(3,2)
    ∴点A3的坐标为(3,4)
    ∴点B3的坐标为(7,4)
    ∴Bn的横坐标是:2n-1,纵坐标是:2n−1
    ∴Bn的坐标是(2n−1,2n−1)
    故点B5的坐标为(31,16).
    此题考查了待定系数法求解一次函数的解析式以及正方形的性质,在解题中注意掌握数形结合思想与方程思想的应用.
    三、解答题(本大题共5个小题,共48分)
    14、(1)表格见解析;(2)120;(3)当小红累计购物大于120时上没封顶,选择甲商场实际花费少;当小红累计购物超过1元而不到120元时,在乙商场实际花费少.
    【解析】
    (1)根据已知得出:
    在甲商场:1+(290-1)×0.9=271,1+(290-1)×0.9x=0.9x+10;
    在乙商场:20+(290-20)×0.92=278,20+(290-20)×0.92x=0.92x+2.2.
    (2)根据题中已知条件,求出0.92x+2.2,0.9x+10相等,从而得出正确结论.
    (3)根据0.92x+2.2与0.9x+10相比较,从而得出正确结论.
    【详解】
    解:(1)填表如下:
    (2)根据题意得:0.9x+10=0.92x+2.2,
    解得:x=120.
    答:当x=120时,小红在甲、乙两商场的实际花费相同.
    (3)由0.9x+10<0.92x+2.2解得:x>120,
    由0.9x+10>0.92x+2.2,解得:x<120,
    ∴当小红累计购物大于120时上没封顶,选择甲商场实际花费少;
    当小红累计购物超过1元而不到120元时,在乙商场实际花费少.
    15、(1)每台空调进价为1600元,电冰箱进价为2000元;(2)当购进电冰箱34台,空调66台获利最大,最大利润为13300元.
    【解析】
    (1)设每台空调的进价为元,每台电冰箱的进价为元,根据题意可列出分式方程,故可求解;
    (2)先表示出y,再求出x的取值,根据一次函数的性质即可求解.
    【详解】
    解:(1)设每台空调的进价为元,每台电冰箱的进价为元.
    根据题意得,
    解得,,
    故每台空调进价为1600元,电冰箱进价为2000元.
    (2)设购进电冰箱台,则进购空调(100-x)台,
    ∴,
    ∵购进空调数量不超过电冰箱数量的2倍,
    ∴100-x≤2x
    解得,
    ∵为正整数,,,
    ∴随的增大而减小,
    ∴当时,的值最大,即最大利润,(元),
    故当购进电冰箱34台,空调66台获利最大,最大利润为13300元.
    此题主要考查一次函数与分式方程的求解,解题的关键是根据题意得到方程或函数进行求解.
    16、(1)作图见解析 (2)作图见解析 (3)作图见解析
    【解析】
    (1)根据中心对称的性质作图即可.
    (2)根据旋转的性质作图即可.
    (3)根据三角形面积公式作图即可.
    【详解】
    (1)如图所示,即为所求.
    (2)如图所示,即为所求.
    (3)如图所示,直线CD即为所求.
    本题考查了方格作图的问题,掌握中心对称的性质、旋转的性质、三角形面积公式是解题的关键.
    17、(1)证明见解析;(2)矩形;(3).
    【解析】
    试题分析:(1)根据角平分线的定义以及平行四边形的性质,即可得到AB=CD,∠BAG=∠DCE,∠ABG=∠CDE,进而判定△ABG≌△CDE;
    (2)根据角平分线的定义以及平行四边形的性质,即可得出∠AGB=90°,∠DEC=90°,∠AHD=90°=∠EHG,进而判定四边形EFGH是矩形;
    (3)根据含30°角的直角三角形的性质,得到BG,AG,BF,CF,进而得出EF和GF的长,可得四边形EFGH的面积.
    试题解析:解:(1)∵GA平分∠BAD,EC平分∠BCD,∴∠BAG=∠BAD,∠DCE=∠DCB,∵▱ABCD中,∠BAD=∠DCB,AB=CD,∴∠BAG=∠DCE,同理可得,∠ABG=∠CDE,在△ABG和△CDE中,∵∠BAG=∠DCE,AB=CD,∠ABG=∠CDE,∴△ABG≌△CDE(ASA);
    (2)四边形EFGH是矩形.
    证明:∵GA平分∠BAD,GB平分∠ABC,∴∠GAB=∠BAD,∠GBA=∠ABC,∵▱ABCD中,∠DAB+∠ABC=180°,∴∠GAB+∠GBA=(∠DAB+∠ABC)=90°,即∠AGB=90°,同理可得,∠DEC=90°,∠AHD=90°=∠EHG,∴四边形EFGH是矩形;
    (3)依题意得,∠BAG=∠BAD=30°,∵AB=6,∴BG=AB=3,AG==CE,∵BC=4,∠BCF=∠BCD=30°,∴BF=BC=2,CF=,∴EF=﹣=,GF=3﹣2=1,∴矩形EFGH的面积=EF×GF=.
    点睛:本题主要考查了平行四边形的性质,矩形的判定以及全等三角形的判定与性质的运用,解题时注意:有三个角是直角的四边形是矩形.在判定三角形全等时,关键是选择恰当的判定条件.
    18、证明:在ABCD中,AD=BC且AD∥BC,
    ∵BE=FD,∴AF=CE.
    ∴四边形AECF是平行四边形
    【解析】
    试题分析:根据平行四边形的性质可得AF∥EC.AF=EC,然后根据平行四边形的定义即可证得.
    证明:∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC,
    ∵点E,F分别是BC,AD的中点,
    ∴,,
    ∴AF∥EC,AF=EC,
    ∴四边形AECF是平行四边形.
    【点评】本题考查了平行四边形的性质与判定;熟练掌握平行四边形的性质,证出AF=EC是解决问题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、m<1
    【解析】
    利用一次函数图象与系数的关系列出关于m的不等式m<1即可.
    【详解】
    ∵一次函数y=mx﹣4中,y随x的增大而减小,
    ∴m<1,
    故答案是:m<1.
    本题主要考查一次函数图象与系数的关系.解答本题的关键是注意理解:k>1时,直线必经过一、三象限,y随x的增大而增大;k<1时,直线必经过二、四象限,y随x的增大而减小.
    20、
    【解析】
    过A点作A⊥BD于F,根据平行线的判定可得AF∥BC,根据含30度直角三角形的性质可得BC=AB,根据三角形内角和可得∠ADB=∠BAD,根据等腰三角形的性质可得BD=AB,从而得到BC=BD,在Rt△CBE中,根据含30度直角三角形的性质可得BC,在Rt△CBD中,根据等腰直角三角形的性质可得CD.
    【详解】
    过A点作A⊥BD于F,
    ∵∠DBC=90°,
    ∴AF∥BC,
    ∵CE=2AE,
    ∴AF=BC,
    ∵∠ABD=30°,
    ∴AF=AB,
    ∴BC=AB,
    ∵∠ABD=30°,∠ADB=75°,
    ∴∠BAD=75°,∠ACB=30°,
    ∴∠ADB=∠BAD,
    ∴BD=AB,
    ∴BC=BD,
    ∵CE=4,
    在Rt△CBE中,BC=CE=6,
    在Rt△CBD中,CD=BC=6.
    故答案为:6.
    此题考查了含30度直角三角形的性质,以及等腰三角形的判定和性质,得到Rt△CBE是含30度直角三角形,以及Rt△CBD是等腰直角三角形是解本题的关键.
    21、1
    【解析】
    先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF的长.
    【详解】
    解:∵EF⊥BD,∠AEO=120°,
    ∴∠EDO=30°,∠DEO=60°,
    ∵四边形ABCD是矩形,
    ∴∠OBF=∠OCF=30°,∠BFO=60°,
    ∴∠FOC=60°-30°=30°,
    ∴OF=CF,
    又∵Rt△BOF中,BO=BD=AC=,
    ∴OF=tan30°×BO=1,
    ∴CF=1,
    故答案为:1.
    本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分.
    22、
    【解析】
    先把(-1,0)代入y=kx+b得b=k,则k(x-3)+b<0化为k(x-3)+k<0,然后解关于x的不等式即可.
    【详解】
    解:把(-1,0)代入y=kx+b得-k+b=0,解b=k,
    则k(x-3)+b<0化为k(x-3)+k<0,
    而k<0,
    所以x-3+1>0,
    解得x>1.
    故答案为x>1.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    23、(3x+1)2
    【解析】
    原式利用完全平方公式分解即可.
    【详解】
    解:原式=(3x+1)2,
    故答案为:(3x+1)2
    此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、证明见详解.
    【解析】
    (1)求出平行四边形AGCD,推出CD=AG,推出EG=DF,EG∥DF,根据平行四边形的判定推出即可.
    (2)连接DG,求出∠DGC=90°,求出DF=GF,根据菱形的判定推出即可.
    【详解】
    (1)∵AG∥DC,AD∥BC,
    ∴四边形AGCD是平行四边形
    ∴AG=DC
    ∵E、F分别为AG、DC的中点,
    ∴GE=AG,DF=DC,
    即GE=DF,GE∥DF
    ∴四边形DEGF是平行四边形
    (2)连接DG,
    ∵四边形AGCD是平行四边形,
    ∴AD=CG
    ∵G为BC中点,
    ∴BG=CG=AD
    ∵AD∥BG,
    ∴四边形ABGD是平行四边形
    ∴AB∥DG
    ∵∠B=90°,
    ∴∠DGC=∠B=90°
    ∵F为CD中点,
    ∴GF=DF=CF,
    即GF=DF
    ∵四边形DEGF是平行四边形,
    ∴四边形DEGF是菱形.
    25、(1)k≤−2;(2)t的最小值为−1.
    【解析】
    (1)由一元二次方程存在两实根,可得△≥0,进而求得k的取值范围;
    (2)将α+β化为关于k的表达式,根据k的取值范围得出t的取值范围,即可求得的最小值.
    【详解】
    (1)∵一元二次方程x2−2(2−k)x+k2+12=0有实数根a,β,
    ∴△≥0,即:1(2−k)2−1(k2+12)≥0,解得:k≤−2;
    (2)由根与系数的关系得:a+β=−[−2(2−k)]=1−2k,
    ∴==−2,
    ∵k≤−2,
    ∴−2≤

    相关试卷

    2024年湖北省襄州区六校联考九上数学开学考试模拟试题【含答案】:

    这是一份2024年湖北省襄州区六校联考九上数学开学考试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省襄阳襄州区五校联考数学九上开学教学质量检测试题【含答案】:

    这是一份2024年湖北省襄阳襄州区五校联考数学九上开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省襄阳市襄州区龙王中学数学九上开学学业质量监测试题【含答案】:

    这是一份2024年湖北省襄阳市襄州区龙王中学数学九上开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map