终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2025届湖北省孝感市八校数学九上开学质量检测试题【含答案】

    立即下载
    加入资料篮
    2025届湖北省孝感市八校数学九上开学质量检测试题【含答案】第1页
    2025届湖北省孝感市八校数学九上开学质量检测试题【含答案】第2页
    2025届湖北省孝感市八校数学九上开学质量检测试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届湖北省孝感市八校数学九上开学质量检测试题【含答案】

    展开

    这是一份2025届湖北省孝感市八校数学九上开学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)某校有15名同学参加区数学竞赛.已知有8名同学获奖,他们的竞赛得分均不相同.若知道某位同学的得分.要判断他能否获奖,在下列15名同学成绩的统计量中,只需知道( )
    A.方差B.平均数C.众数D.中位数
    2、(4分)若二次根式有意义,则a的取值范围是( )
    A.a<3B.a>3C.a≤3D.a≠3
    3、(4分)如图,正方形中,为上一点,,交的延长线于点.若,,则的长为( )
    A.B.C.D.
    4、(4分)在,,,,,中分式的个数有( )
    A.2个B.3个C.4个D.5个
    5、(4分)一次函数的图象如图所示,则不等式的解集是( )
    A.B.C.D.
    6、(4分)若关于的方程是一元二次方程,则的取值范围是( )
    A.B.C.D.
    7、(4分)点在反比例函数的图像上,则的值为( )
    A.B.C.D.
    8、(4分)△ABC中,AB=20,AC=13,高AD=12,则△ABC的周长是 ( )
    A.54B.44C.54或44D.54或33
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,直线y=x﹣4与x轴交于点A,以OA为斜边在x轴上方作等腰Rt△OAB,并将Rt△AOB沿x轴向右平移,当点B落在直线y=x﹣4上时,Rt△OAB扫过的面积是__.
    10、(4分)边长为的正方形ABCD与直角三角板如图放置,延长CB与三角板的一条直角边相交于点E,则四边形AECF的面积为________.
    11、(4分)面积为的矩形,若宽为,则长为___.
    12、(4分)如图,中,对角线相交于点,,若要使平行四边形为矩形,则的长度是__________.
    13、(4分)如图,在矩形中,点为的中点,点为上一点,沿折叠,点恰好与点重合,则的值为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在正方形中,,分别是,上两个点,.

    (1)如图1,与的关系是________;
    (2)如图2,当点是的中点时,(1)中的结论是否仍然成立,若成立,请进行证明;若不成立,说明理由;
    (3)如图2,当点是的中点时,求证:.
    15、(8分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程
    解:设x2﹣4x=y,
    原式=(y+2)(y+6)+4 (第一步)
    =y2+8y+16 (第二步)
    =(y+4)2(第三步)
    =(x2﹣4x+4)2(第四步)
    (1)该同学第二步到第三步运用了因式分解的 (填序号).
    A.提取公因式 B.平方差公式
    C.两数和的完全平方公式 D.两数差的完全平方公式
    (2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后? .(填“是”或“否”)如果否,直接写出最后的结果 .
    (3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.
    16、(8分)化简:()÷并解答:
    (1)当x=1+时,求原代数式的值;
    (2)原代数式的值能等于﹣1吗?为什么?
    17、(10分)以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.
    (1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);
    (2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),
    ①试用含α的代数式表示∠HAE;
    ②求证:HE=HG;
    ③四边形EFGH是什么四边形?并说明理由.
    18、(10分)如图,已知是平行四边形中边的中点,是对角线,连结并延长交的延长线于点,连结.求证:四边形是平行四边形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一组数据5,8,x,10,4的平均数是2x,则这组数据的中位数是___________.
    20、(4分)如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,若AC=8,BC=6,则CD=_____.
    21、(4分)正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=2,AE=8,则ED=_____.
    22、(4分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠BAC=45°,则下列结论:①CD∥EF;②EF=DF;③DE平分∠CDF;④∠DEC=30°;⑤AB=CD;其中正确的是_____(填序号)
    23、(4分)如图,在中,角是边上的一点,作垂直, 垂直,垂足分别为,则的最小值是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,点E,F在矩形的边AD,BC上,点B与点D关于直线EF对称.设点A关于直线EF的对称点为G.
    (1)画出四边形ABFE关于直线EF对称的图形;
    (2)若∠FDC=16°,直接写出∠GEF的度数为 ;
    (3)若BC=4,CD=3,写出求线段EF长的思路.
    25、(10分) (1)分解因式:﹣m+2m2﹣m3
    (2)化简:( +)÷(﹣).
    26、(12分)某汽车出发前油箱内有油42L,行驶若干小时后,在途中加油站加油若干升.邮箱中剩余油量Q(L)与行驶时间t(h)之间的函数关系如图所示.
    (1)汽车行驶 h后加油,加油量为 L;
    (2)求加油前油箱剩余油量Q与行驶时间t之间的函数关系式;
    (3)如果加油站离目的地还有200km,车速为40km/h,请直接写出汽车到达目的地时,油箱中还有多少汽油?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能获奖,只需要了解自己的成绩以及全部成绩的中位数,比较即可。
    【详解】
    解:由于总共有15个人,且他们的分数互不相同,第8名的成绩是中位数,要判断是否得奖,故应知道自已的成绩和中位数.
    故选:D.
    本题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    2、C
    【解析】
    根据被开方数是非负数,可得答案.
    【详解】
    解:由题意得,
    3−a⩾0,解得a⩽3,
    故选:C.
    本题主要考查了二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.
    3、D
    【解析】
    先根据题意得出△ABM∽△MCG,故可得出CG的长,再求出DG的长,根据△MCG∽△EDG即可得出结论.
    【详解】
    四边形ABCD是正方形,AB=12,BM=5,
    .,
    ,
    ,
    ,
    ,,
    ,
    ,即,
    解得,
    ,
    ,
    ,
    ,
    ,即,
    解得.
    故选D.
    本题主要考查相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.
    4、B
    【解析】
    根据分式的定义进行判断;
    【详解】
    ,,,,中分式有:,,共计3个.
    故选:B.
    考查了分式的定义,解题关键抓住分式中分母含有字母.
    5、A
    【解析】
    根据一次函数与一元一次不等式的关系即可求出答案.
    【详解】
    解:∵y=kx+b,kx+b<0
    ∴y<0,
    由图象可知:x<-2
    故选:A.
    本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.
    6、A
    【解析】
    本题根据一元二次方程的定义求解,一元二次方程必须满足两个条件:未知数的最高次数是2;二次项系数不为1.由这两个条件得到相应的关系式,再求解即可.
    【详解】
    由题意,得
    m-2≠1,
    m≠2,
    故选A.
    本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特别要注意a≠1的条件.这是在做题过程中容易忽视的知识点.
    7、B
    【解析】
    把点M代入反比例函数中,即可解得K的值.
    【详解】
    解:∵点在反比例函数的图像上,
    ∴,解得k=3.
    本题考查了用待定系数法求函数解析式,正确代入求解是解题的关键.
    8、C
    【解析】
    根据题意画出示意图进行分析判断,然后根据勾股定理计算出底边BC的长,最后求和即可.
    【详解】
    (1)
    在直角三角形ACD中,有
    在直角三角形ADB中,有
    则CB=CD+DB=5+16=21
    所以三角形的面积为CB+AC+AB=21+13+20=54.
    (2)
    在直角三角形ACD中,有
    在直角三角形ADB中,有
    则CB=DB -CD =16-5=11
    所以三角形的面积为CB+AC+AB=11+13+20=44.
    故答案为:D.
    本题考查了勾股定理的应用,解题关键在于以高为突破点把三角形分为高在三角形内部和外部的两种情况.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.
    【解析】
    根据等腰直角三角形的性质求得点BC、OC的长度,即点B的纵坐标,表示出B′的坐标,代入函数解析式,即可求出平移的距离,进而根据平行四边形的面积公式即可求得.
    【详解】
    解:y=x-4,
    当y=0时,x-4=0,
    解得:x=4,
    即OA=4,
    过B作BC⊥OA于C,
    ∵△OAB是以OA为斜边的等腰直角三角形,
    ∴BC=OC=AC=2,
    即B点的坐标是(2,2),
    设平移的距离为a,
    则B点的对称点B′的坐标为(a+2,2),
    代入y=x-4得:2=(a+2)-4,
    解得:a=4,
    即△OAB平移的距离是4,
    ∴Rt△OAB扫过的面积为:4×2=1,
    故答案为:1.
    本题考查了一次函数图象上点的坐标特征、等腰直角三角形和平移的性质等知识点,能求出B′的坐标是解此题的关键.
    10、5
    【解析】
    由四边形ABCD为正方形可以得到∠D=∠B=90°,AD=AB,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE,所以可以证明△AEB≌△AFD,所以S =S,那么它们都加上四边形ABCF的面积,即可四边形AECF的面积=正方形的面积,从而求出其面积.
    【详解】
    ∵四边形ABCD为正方形,
    ∴∠D=∠ABC=90°,AD=AB,
    ∴∠ABE=∠D=90°,
    ∵∠EAF=90°,
    ∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,
    ∴∠DAF=∠BAE,
    ∴△AEB≌△AFD(ASA),
    ∴S =S ,
    ∴它们都加上四边形ABCF的面积,
    可得到四边形AECF的面积=正方形的面积=5.
    故答案为:5.
    此题考查全等三角形的判定与性质,正方形的性质,解题关键在于掌握判定定理.
    11、2
    【解析】
    根据矩形的面积公式列式计算即可.
    【详解】
    解:由题意,可知该矩形的长为:÷==2.
    故答案为2
    本题考查了二次根式的应用,掌握矩形的面积公式以及二次根式的除法法则是解题的关键.
    12、
    【解析】
    根据矩形的性质得到OA=OC=OB=OD,可得出结果.
    【详解】
    解:假如平行四边形ABCD是矩形,
    ∴OA=OC=OB=OD,
    ∵OA=3,
    ∴BD=2OB=1.
    故答案为:1.
    本题主要考查了矩形的性质,平行四边形的性质等知识点的理解和掌握.
    13、
    【解析】
    【分析】由矩形性质可得AB=CD,BC=AD;由对折得AB=BE,设AB=x,根据勾股定理求出BC关于x的表达式,便可得到.
    【详解】设AB=x,在矩形ABCD中, AB=CD=x,BC=AD;
    因为,E为CD的中点,
    所以,CE=,
    由对折可知BE=AB=x.
    在直角三角形BCE中
    BC=,
    所以,.
    故答案为图(略),
    【点睛】本题考核知识点:矩形性质,轴对称. 解题关键点:利用轴对称性质得到相等线段,利用勾股定理得到BE和BC的关系.
    三、解答题(本大题共5个小题,共48分)
    14、(1),;(2)成立,证明见解析;(3)见解析
    【解析】
    (1)因为,ABCD是正方形,所以AE=DF,可证△ADF≌BAE,可得=,再根据角∠AEB=∠AFD,∠DAF+∠AFD=90°,可得∠DAF+∠AEB=90°,可得;
    (2)成立,因为E为AD中点,所以AE=DF,可证△ABE≌△DAF,可得=,再根据角∠AEB=∠AFD,∠DAF+∠AFD=90°,得到∠DAF+∠AEB=90°,可得;
    (3) 如解图,取AB中点H,连接CH交BG于点M,由(2)得,可证,所以MH为△AGB的中位线,所以M为BG中点,所以CM为BG垂直平分线,所以.
    【详解】
    解:(1)AF=BE且AF⊥BE.理由如下:
    证明:∵,ABCD为正方形
    AE=AD-DE,DF=DC-CF
    ∴AE=DF
    又∵∠BAD=∠D=90°,AB=AD
    ∴△ABE≌△DAF
    ∴AF=BE,∠AEB=∠AFD
    ∵在直角△ADF中,∠DAF+∠AFD=90°
    ∴∠DAF+∠AEB=90°
    ∴∠AGE=90°
    ∴AF⊥BE;
    (2)成立,AF=BE且AF⊥BE.理由如下:
    证明:∵E、F分别是AD、CD的中点,
    ∴AE=AD,DF=CD
    ∴AE=DF
    又∵∠BAD=∠D=90°,AB=AD
    ∴△ABE≌△DAF
    ∴AF=BE,∠AEB=∠AFD
    ∵在直角△ADF中,∠DAF+∠AFD=90°
    ∴∠DAF+∠AEB=90°
    ∴∠AGE=90°
    ∴AF⊥BE
    (3)取AB中点H,连接CH交BG于点M
    ∵H、F分别为AB、DC中点,AB∥CD,
    ∴AH=CF,
    ∴四边形AHCF是平行四边形,
    ∴AF∥CH,
    又∵由(2)得,
    ∴,
    ∵AF∥CH,H为AB中点,
    ∴M为BG中点,
    ∵M为BG中点,且,
    ∴CH垂直平分BG,
    ∴CG=CB.
    本题考查平行四边形的判定和性质,正方形的性质以及全等三角形的判定和性质,灵活应用全等三角形的性质是解题关键.
    15、(1)C;(2)否,(x﹣2)1;(3)(x2﹣2x)(x2﹣2x+2)+1=(x﹣1)1.
    【解析】
    (1)根据分解因式的过程直接得出答案;
    (2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;
    (3)将看作整体进而分解因式即可.
    【详解】
    (1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;
    故选:C;
    (2)这个结果没有分解到最后,
    原式=(x2﹣1x+1)2=(x﹣2)1;
    故答案为:否,(x﹣2)1;
    (3)设为x2﹣2x=t,
    则原式=t(t+2)+1
    =t2+2t+1
    =(t+1)2
    =(x2﹣2x+1)2
    =(x﹣1)1.
    此题主要考查了公式法分解因式,熟练利用完全平方公式分解因式是解题关键,注意分解因式要彻底.
    16、(1)+1(2)不能
    【解析】
    将原式进行化简可得出原式=.
    (1)代入x=1+,即可求出原式的值;
    (2)令原式等于﹣1,可求出x=0,由原式中除数不能为零,可得出原代数式的值不能等于﹣1.
    【详解】
    解:原式=[﹣]•=(﹣)••.
    (1)当x=1+时,原式==+1.
    (2)不能,理由如下:
    解=﹣1,得:x=0,
    ∵当x=0时,原式中除数=0,∴原代数式的值不能等于﹣1.
    本题考查了分式的化简求值,将原式化简为是解题的关键.
    17、 (1) 四边形EFGH的形状是正方形;(2)①∠HAE=90°+a;②见解析;③四边形EFGH是正方形,理由见解析
    【解析】
    (1)根据等腰直角三角形的性质得到∠E=∠F=∠G=∠H=90°,求出四边形是矩形,根据勾股定理求出AH=HD=AD,DG=GC=CD,CF=BF=BC,AE=BE=AB,推出EF=FG=GH=EH,根据正方形的判定推出四边形EFGH是正方形即可;
    (2)①根据平行四边形的性质得出,∠BAD=180°-α,根据△HAD和△EAB是等腰直角三角形,得到∠HAD=∠EAB=45°,求出∠HAE即可;
    ②根据△AEB和△DGC是等腰直角三角形,得出AE=AB,DG=CD,平行四边形的性质得出AB=CD,求出∠HDG=90°+a=∠HAE,根据SAS证△HAE≌△HDG,根据全等三角形的性质即可得出HE=HG;
    ③与②证明过程类似求出GH=GF,FG=FE,推出GH=GF=EF=HE,得出菱形EFGH,证△HAE≌△HDG,求出∠AHD=90°,∠EHG=90°,即可推出结论.
    【详解】
    (1)解:四边形EFGH的形状是正方形.
    (2)解:①∠HAE=90°+α,
    在平行四边形ABCD中AB∥CD,
    ∴∠BAD=180°-∠ADC=180°-α,
    ∵△HAD和△EAB是等腰直角三角形,
    ∴∠HAD=∠EAB=45°,
    ∴∠HAE=360°-∠HAD-∠EAB-∠BAD=360°-45°-45°-(180°-a)=90°+α,
    答:用含α的代数式表示∠HAE是90°+α.
    ②证明:∵△AEB和△DGC是等腰直角三角形,
    ∴AE=AB,DG=CD,
    在平行四边形ABCD中,AB=CD,
    ∴AE=DG,
    ∵△AHD和△DGC是等腰直角三角形,
    ∴∠HDA=∠CDG=45°,
    ∴∠HDG=∠HDA+∠ADC+∠CDG=90°+α=∠HAE,
    ∵△AHD是等腰直角三角形,
    ∴HA=HD,
    ∴△HAE≌△HDG,
    ∴HE=HG.
    ③答:四边形EFGH是正方形,
    理由是:由②同理可得:GH=GF,FG=FE,
    ∵HE=HG,
    ∴GH=GF=EF=HE,
    ∴四边形EFGH是菱形,
    ∵△HAE≌△HDG,
    ∴∠DHG=∠AHE,
    ∵∠AHD=∠AHG+∠DHG=90°,
    ∴∠EHG=∠AHG+∠AHE=90°,
    ∴四边形EFGH是正方形.
    考查对正方形的判定,等腰直角三角形的性质,菱形的判定和性质,全等三角形的性质和判定,平行线的性质等知识点的理解和掌握,综合运用性质进行推理是解此题的关键.
    18、见解析
    【解析】
    先证明△ABE与△FCE全等,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形.
    【详解】
    证明:∵四边形ABCD为平行四边形,
    ∴AB∥DC,
    ∴∠ABE=∠ECF,
    又∵E为BC的中点,
    ∴BE=CE,
    在△ABE和△FCE中,

    ∴△ABE≌△FCE(ASA),
    ∴AB=CF,
    又∵四边形ABCD为平行四边形,
    ∴AB∥CF,
    ∴四边形ABFC为平行四边形.
    此题考查了平行四边形的判定与性质,全等三角形的判定与性质,熟练掌握基本判定与性质是解本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、5
    【解析】
    可运用求平均数公式,求出x的值,再根据中位数的性质,求出中位数即可
    【详解】
    依题意得:5+8+x+10+4=2x×5
    ∴x=3,
    ∴3,4,5,8,10,的中位数是5
    故答案为:5
    此题考查算术平均数,中位数,难度不大
    20、4.1.
    【解析】
    直接利用勾股定理得出AB的值,再利用直角三角形面积求法得出答案.
    【详解】
    ∵∠C=90°,AC=1,BC=6,∴AB2.
    ∵CD⊥AB,∴DC×AB=AC×BC,∴DC4.1.
    故答案为:4.1.
    本题考查了勾股定理,正确利用直角三角形面积求法是解题的关键.
    21、1
    【解析】
    解:如图,过B作BP⊥EH于P,连接BE,交FH于N,则∠BPG=90°.∵四边形ABCD是正方形,∴∠BCD=∠ABC=∠BAD=90°,AB=BC,∴∠BCD=∠BPG=90°.∵GB平分∠CGE,∴∠EGB=∠CGB.又∵BG=BG,∴△BPG≌△BCG,∴∠PBG=∠CBG,BP=BC,∴AB=BP.∵∠BAE=∠BPE=90°,BE=BE,∴Rt△ABE≌Rt△PBE(HL),∴∠ABE=∠PBE,∴∠EBG=∠EBP+∠GBP=∠ABC=15°,由折叠得:BF=EF,BH=EH,∴FH垂直平分BE,∴△BNM是等腰直角三角形.∵BM=2,∴BN=NM=2,∴BE=1.∵AE=8,∴Rt△ABE中,AB==12,∴AD=12,∴DE=12﹣8=1.故答案为1.
    点睛:本题考查了翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.
    22、①②③⑤
    【解析】
    根据三角形中位线定理得到EF=AB,EF∥AB,根据直角三角形的性质得到DF=AC,根据三角形内角和定理、勾股定理计算即可判断.
    【详解】
    ∵E,F分别是BC,AC的中点,
    ∴EF=AB,EF∥AB,
    ∵∠ADC=90°,∠CAD=45°,
    ∴∠ACD=45°,
    ∴∠BAC=∠ACD,
    ∴AB∥CD,
    ∴EF∥CD,故①正确;
    ∵∠ADC=90°,F是AC的中点,
    ∴DF=CF=AC,
    ∵AB=AC,EF=AB,
    ∴EF=DF,故②正确;
    ∵∠CAD=∠ACD=45°,点F是AC中点,
    ∴△ACD是等腰直角三角形,DF⊥AC,∠FDC=45°,
    ∴∠DFC=90°,
    ∵EF//AB,
    ∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°,
    ∴∠EFD=∠EFC+∠DFC=135°,
    ∴∠FED=∠FDE=22.5°,
    ∵∠FDC=45°,
    ∴∠CDE=∠FDC-∠FDE=22.5°,
    ∴∠FDE=∠CDE,
    ∴DE平分∠FDC,故③正确;
    ∵AB=AC,∠CAB=45°,
    ∴∠B=∠ACB=67.5°,
    ∴∠DEC=∠FEC﹣∠FED=45°,故④错误;
    ∵△ACD是等腰直角三角形,
    ∴AC2=2CD2,
    ∴AC=CD,
    ∵AB=AC,
    ∴AB=CD,故⑤正确;
    故答案为:①②③⑤.
    本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    23、
    【解析】
    根据已知条件得出四边形AEPF为矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.
    【详解】
    连接AP,
    四边形AFPE是矩形,
    要使EF最小,只要AP最小即可,
    过点A作于P,此时AP最小,
    在直角三角形中,
    由勾股定理得:BC=5,
    由三角形面积公式得:
    ,
    即,
    故答案为:.
    本题是矩形的判定与性质和直角三角形结合考查的题型,找出与EF相等的线段,结合垂线段最短的性质是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)127°;(3)见解析.
    【解析】
    (1)直接利用轴对称图形的性质得出对应点位置进而得出答案;
    (2)利用翻折变换的性质结合平行线的性质得出∠1度数进而得出答案;
    (3)利用翻折变换的性质结合勾股定理得出答案.
    【详解】
    (1)如图所示:
    (2)∵∠FDC=16°,
    ∴∠DFC=74°,
    由对称性得,∠1=∠2=
    ∵AD∥BC,
    ∴∠AEF=∠GEF=180°-53°=127°;
    故答案为:127°.
    (3)思路:
    a.连接BD交EF于点O.
    b.在Rt△DFC中,设FC=x,则FD=4-x,由勾股定理,求得FD长;
    c.Rt△BDC中,勾股可得BD=5,由点B与点D的对称性可得OD的长;
    d.在Rt△DFO中,同理可求OF的长,可证EF=2OF,求得EF的长.
    此题主要考查了翻折变换以及矩形的性质,正确掌握翻折变换的性质是解题关键.
    25、解:(1)﹣m(1﹣m)2;(2).
    【解析】
    (1)先提取公因式−m,再利用完全平方公式分解可得;
    (2)先计算括号内分式的加减运算,再将除法转化为乘法,继而约分可得.
    【详解】
    解:(1)原式=﹣m(1﹣2m+m2)=﹣m(1﹣m)2;
    (2)原式=.
    本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则及因式分解的基本步骤.
    26、(1)5;24;(2)Q=42-6t ;(3)6L.
    【解析】
    (1)根据函数图象的横坐标,可得答案;根据函数图象的纵坐标,可得加油量;
    (2)根据待定系数法,可得函数解析式;
    (3)根据单位耗油量乘以行驶时间,可得行驶路程,根据有理数的大小比较,可得答案.
    【详解】
    (1)由横坐标看出,5小时后加油,
    由纵坐标看出,加了36-12=24(L)油 .
    故答案为5;24;
    (2)设解析式为Q=kt+b,将(0,42),(5,12)代入函数解析式,得

    解得.
    故函数解析式为Q=42-6t ;
    (3)200÷40=5(小时),
    36-6t=42-6×5=6(L),
    答:油箱中还有6L汽油.
    本题考查了函数图象,观察函数图象的横坐标得出时间,观察函数图象的纵坐标得出剩余油量是解题关键,利用待定系数法求函数解析式.
    题号





    总分
    得分

    相关试卷

    2024年湖北省孝感市孝昌县数学九上开学调研试题【含答案】:

    这是一份2024年湖北省孝感市孝昌县数学九上开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省孝感市八校联谊数学九上开学检测模拟试题【含答案】:

    这是一份2024年湖北省孝感市八校联谊数学九上开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省孝感市八校联考数学九上开学教学质量检测试题【含答案】:

    这是一份2024年湖北省孝感市八校联考数学九上开学教学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map