


2025届湖北省宜昌市数学九上开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)不等式 的解集为( ).
A.B.C.D.
2、(4分)如图所示的图象反映的过程是:宝室从家跑步去体育馆,在那里锻炼了一段时间后又走到文具店去买铅笔,然后散步回家图中x表示时间,y表示宝宝离家的距离,那么下列说法正确的是
A.宝宝从文具店散步回家的平均速度是
B.室宝从家跑步去体育馆的平均速度是
C.宝宝在文具店停留了15分钟
D.体育馆离宝宝家的距离是
3、(4分)已知点A(﹣2,y1),点B(﹣4,y2)在直线y=﹣2x+3上,则( )
A.y1>y2 B.y1=y2 C.y1<y2 D.无法比较
4、(4分)下列命题中,错误的是( )
A.过n边形一个顶点的所有对角线,将这个多边形分成(n﹣2)个三角形
B.三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点
C.三角形的中线将三角形分成面积相等的两部分
D.一组对边平行另一组对边相等的四边形是平行四边形
5、(4分)函数的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
6、(4分)如图,在正方形ABCD中,△BPC是等边三角形,BP,CP的延长线分别交AD于点E,F,连接BD,DP,BD与CF交于点H.下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC,其中正确的结论是
A.①②③④B.②③C.①②④D.①③④
7、(4分)若 A(,)、B(,)是一次函数 y=(a-1)x+2 图象上的不同的两个点,当>时,<,则 a 的取值范围是( )
A.a>0B.a<0C.a>1D.a<1
8、(4分)用反证法证明命题“若,则”时,第一步应假设( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若,则a2﹣6a﹣2的值为_____.
10、(4分)如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PE⊥AC于F,则EF的最小值_____.
11、(4分)反比例函数的图象过点P(2,6),那么k的值是 .
12、(4分)实验中学规定学生学期的数学成绩满分为120分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,王玲的三项成绩依次是100分,90分,106分,那么王玲这学期的数学成绩为_____分.
13、(4分)若一组数据1,3,x,4,5,6的平均数是4,则这组数据的众数是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.
(感知)如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)
(探究)如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.
(1)求证:BE=FG.
(2)连结CM,若CM=1,则FG的长为 .
(应用)如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为 .
15、(8分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)被调查的学生共有 人,并补全条形统计图;
(2)在扇形统计图中,m= ,n= ,表示区域C的圆心角为 度;
(3)全校学生中喜欢篮球的人数大约有多少?
16、(8分)下图是交警在一个路口统计的某个时段来往车辆的车速情况.应用你所学的统计知识,写一份简短的报告,让交警知道这个时段路口来往车辆的车速情况.
17、(10分)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分、80分、90分、100分,并根据统计数据绘制了如下不完整的统计图表:
乙校成绩统计表
(1)在图①中,“80分”所在扇形的圆心角度数为________;
(2)请你将图②补充完整;
(3)求乙校成绩的平均分;
(4)经计算知s甲2=135,s乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.
18、(10分)求不等式组的整数解.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知:,则______.
20、(4分)已知正方形的边长为1,如果将向量的运算结果记为向量,那么向量的长度为______
21、(4分)已知正n边形的每一个内角为150°,则n=_____.
22、(4分)下表是某校女子羽毛球队队员的年龄分布:
则该校女子排球队队员年龄的中位数为__________岁.
23、(4分)如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,点是正方形的中心,点是边上一动点,在上截取,连结,.初步探究:在点的运动过程中:
(1)猜想线段与的关系,并说明理由.
深入探究:
(2)如图2,连结,过点作的垂线交于点.交的延长线于点.延长交的延长线于点.
①直接写出的度数.
②若,请探究的值是否为定值,若是,请求出其值;反之,请说明理由
25、(10分)某种商品的定价为每件20元,商场为了促销,决定如果购买5件以上,则超过5件的部分打7折.
(1)求购买这种商品的货款y (元)与购买数量x (件)之间的函数关系;
(2)当x=3,x=6时,货款分别为多少元?
26、(12分)如图1,在△ABC中,AB=AC,D、E是BC边上的点,连接AD、AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD=CD′.
(1)求证:△ABD≌△ACD′;
(1)如图1,若∠BAC=110°,探索BD,DE,CE之间满足怎样的数量关系时,△CD′E是正三角形;
(3)如图3,若∠BAC=90°,求证:DE1=BD1+EC1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
先移项,再系数化为1即可得到不等式的解集.
【详解】
解:移项得:
合并同类项得:
系数化为1得:
故选:B
本题考查了一元一次不等式的解法,熟练掌握计算法则是关键,当两边除以负数时,要注意不等号的方向要改变.
2、A
【解析】
根据特殊点的实际意义即可求出答案.
【详解】
解:A、宝宝从文具店散步回家的平均速度是,正确;
B、室宝从家跑步去体育馆的平均速度是,错误;
C、宝宝在文具店停留了分钟,错误;
D、体育馆离宝宝家的距离是,错误.
故选:A.
本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.
3、C
【解析】
利用一次函数图象上点的坐标特征求出y1、y2的值,比较后即可得出结论(利用一次函数的性质解决问题亦可).
【详解】
∵点A(﹣2,y1)、点B(﹣4,y2)在直线y=﹣2x+3上,∴y1=7,y2=1.
∵7<1,∴y1<y2.
故选C.
本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.
4、D
【解析】
根据多边形对角线的定义对A进行判断;根据三角形外心的性质对B进行判断;根据三角形中线定义和三角形面积公式对C进行判断;根据平行四边形的判定方法对D进行判断.
【详解】
解:A.过n边形一个顶点的所有对角线,将这个多边形分成(n﹣2)个三角形,所以A选项为真命题;
B.三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点,所以B选项为真命题;
C.三角形的中线将三角形分成面积相等的两部分,所以C选项为真命题;
D.一组对边平行且相等的四边形是平行四边形,所以D选项为假命题.
故选D.
本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
5、B
【解析】
根据k>0确定一次函数经过第一三象限,根据b<0确定与y轴负半轴相交,从而判断得解.
【详解】
解:一次函数y=x﹣2,
∵k=1>0,
∴函数图象经过第一三象限,
∵b=﹣2<0,
∴函数图象与y轴负半轴相交,
∴函数图象经过第一三四象限,不经过第二象限.
故选B.
6、C
【解析】
由正方形的性质和相似三角形的判定与性质,即可得出结论.
【详解】
∵△BPC是等边三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ADC=∠BCD=90°
∴∠ABE=∠DCF=30°,
∴BE=2AE;故①正确;
∵PC=CD,∠PCD=30°,
∴∠PDC=75°,
∴∠FDP=15°,
∵∠DBA=45°,
∴∠PBD=15°,
∴∠FDP=∠PBD,
∵∠DFP=∠BPC=60°,
∴△DFP∽△BPH;故②正确;
∵∠FDP=∠PBD=15°,∠ADB=45°,
∴∠PDB=30°,而∠DFP=60°,
∴∠PFD≠∠PDB,
∴△PFD与△PDB不会相似;故③错误;
∵∠PDH=∠PCD=30°,∠DPH=∠DPC,
∴△DPH∽△CPD,
∴,
∴DP2=PH∙PC,故④正确;
故选C.
7、D
【解析】
根据一次函数的图象y=(a-1)x+2,当a-1<0时,y随着x的增大而减小分析即可.
【详解】
解:因为A(x1,y1)、B(x2,y2)是一次函数y=(a-1)x+2图象上的不同的两个点,当x1>x2时,y1<y2,
可得:a-1<0,
解得:a<1.
故选D.
本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b的性质:当k<0时,y随着x的增大而减小;k>0时,y随着x的增大而增大;k=0时,y的值=b,与x没关系.
8、C
【解析】
用反证法证明命题的真假,首先我们要假设命题的结论不成立,据此即可得出答案.
【详解】
∵用反证法证明命题的真假,首先我们要假设命题的结论不成立,
∴反证法证明命题“若,则”时,第一步应假设,
故选:C.
本题主要考查了反证法的运用,熟练掌握相关概念是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
把a的值直接代入计算,再按二次根式的运算顺序和法则计算.
【详解】
解:当 时,
a2﹣6a﹣2=(3﹣)2﹣6(3﹣)﹣2
=19﹣6﹣18+6﹣2
=﹣1.
本题考查了实数的混合运算,解题的关键是掌握实数的运算法则.
10、2.4
【解析】
根据已知得出四边形AEPF是矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.
【详解】
连接AP,
∵∠A=90°,PE⊥AB,PF⊥AC,
∴∠A=∠AEP=∠AFP=90°,
∴四边形AFPE是矩形,
∴EF=AP,
要使EF最小,只要AP最小即可,
过A作AP⊥BC于P,此时AP最小,
在Rt△BAC中,∠A=90°,AC=4,AB=3,由勾股定理得:BC=5,
由三角形面积公式得:12×4=12×5×AP,
∴AP=2.4,
即EF=2.4
此题考查勾股定理,矩形的判定与性质,解题关键在于得出四边形AEPF是矩形
11、1.
【解析】
试题分析:∵反比例函数的图象过点P(2,6),∴k=2×6=1,故答案为1.
考点:反比例函数图象上点的坐标特征.
12、100
【解析】
利用加权平均数的公式直接计算.用91分,90分,81分别乘以它们的百分比,再求和即可.
【详解】
小惠这学期的体育成绩=91×20%+90×30%+81×10%=88.1(分).
故答案为88.1.
此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.
13、5
【解析】
根据题意可知这组数据的和是24,列方程即可求得x,然后求出众数.
【详解】
解:由题意可知,1+3+x+4+5+6=4×6,
解得:x=5,
所以这组数据的众数是5.
故答案为5.
此题考查了众数与平均数的知识.众数是这组数据中出现次数最多的数.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(1)1,2.
【解析】
【分析】感知:利用同角的余角相等判断出∠BAF=∠CBE,即可得出结论;
探究:(1)判断出PG=BC,同感知的方法判断出△PGF≌CBE,即可得出结论;
(1)利用直角三角形的斜边的中线是斜边的一半,
应用:借助感知得出结论和直角三角形斜边的中线是斜边的一半即可得出结论.
【详解】感知:∵四边形ABCD是正方形,
∴AB=BC,∠BCE=∠ABC=20°,
∴∠ABE+∠CBE=20°,
∵AF⊥BE,
∴∠ABE+∠BAF=20°,
∴∠BAF=∠CBE,
在△ABF和△BCE中,
,
∴△ABF≌△BCE(ASA);
探究:(1)如图②,
过点G作GP⊥BC于P,
∵四边形ABCD是正方形,
∴AB=BC,∠A=∠ABC=20°,
∴四边形ABPG是矩形,
∴PG=AB,∴PG=BC,
同感知的方法得,∠PGF=∠CBE,
在△PGF和△CBE中,
,
∴△PGF≌△CBE(ASA),
∴BE=FG;
(1)由(1)知,FG=BE,
连接CM,
∵∠BCE=20°,点M是BE的中点,
∴BE=1CM=1,
∴FG=1,
故答案为:1.
应用:同探究(1)得,BE=1ME=1CM=6,
∴ME=3,
同探究(1)得,CG=BE=6,
∵BE⊥CG,
∴S四边形CEGM=CG×ME=×6×3=2,
故答案为:2.
【点睛】本题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,熟练掌握相关的性质与定理、判断出CG=BE是解本题的关键.
15、(1)学生总数100人,跳绳40人,条形统计图见解析;(2)144°;(3)200人.
【解析】
(1)用B组频数除以其所占的百分比即可求得样本容量;
(2)用A组人数除以总人数即可求得m值,用D组人数除以总人数即可求得n值;
(3)用总人数乘以D类所占的百分比即可求得全校喜欢篮球的人数;
【详解】
解:(1)观察统计图知:喜欢乒乓球的有20人,占20%,
故被调查的学生总数有20÷20%=100人,
喜欢跳绳的有100﹣30﹣20﹣10=40人,
条形统计图为:
(2)∵A组有30人,D组有10人,共有100人,
∴A组所占的百分比为:30%,D组所占的百分比为10%,
∴m=30,n=10;
表示区域C的圆心角为×360°=144°;
(3)∵全校共有2000人,喜欢篮球的占10%,
∴喜欢篮球的有2000×10%=200人.
考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
16、见解析
【解析】
根据图形中的信息可得出最高速度与最低速度,其中速度最多的车辆有多少等等,最后组织语言交代清楚即可.
【详解】
由图可得:此处车辆速度平均在51千米/小时以上,大多以53千米/小时或54千米/小时速度行驶,最高速度为53千米/小时,有超过一半的速度在52千米/小时以上,行驶速度众数为53.
本题主要考查了统计图的认识,熟练掌握相关概念是解题关键.
17、 (1)54°;(2)补图见解析;(3)85分;(4)甲校20名同学的成绩相对乙校较整齐.
【解析】
试题分析:(1)根据统计图可知甲班70分的有6人,从而可求得总人数,然后可求得成绩为80分的同学所占的百分比,最后根据圆心角的度数=360°×百分比即可求得答案;
(2)用总人数减去成绩为70分、80分、90分的人数即可求得成绩为100分的人数,从而可补全统计图;
(3)先求得乙班成绩为80分的人数,然后利用加权平均数公式计算平均数;
(4)根据方差的意义即可做出评价.
试题解析:(1)6÷30%=20,
3÷20=15%,
360°×15%=54°;
(2)20-6-3-6=5,统计图补充如下:
(3)20-1-7-8=4,
=85;
(4)∵S甲2<S乙2,
∴甲班20同名同学的成绩比较整齐.
18、-1、-1、0、1 、1.
【解析】
试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).最后求出整数解.
试题解析:
解不等式①,得,
解不等式②,得,
∴不等式组的解集为.
∴不等式组的整数解为-1、-1、0、1、1.
考点:解一元一次不等式组.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
首先根据二次根式有意义的条件和分式有意义的条件列出不等式,求出x的值,然后可得y的值,易求结果.
【详解】
解:由题意得:,
∴x=-2,
∴y=3,
∴,
故答案为:.
本题考查了二次根式和分式的性质,根据他们各自的性质求出x,y的值是解题关键.
20、1
【解析】
利用向量的三角形法则直接求得答案.
【详解】
如图:
∵-==且||=1,
∴||=1.
故答案为:1.
此题考查了平面向量,属于基础题,熟记三角形法则即可解答.
21、1
【解析】
试题解析:由题意可得:
解得
故多边形是1边形.
故答案为1.
22、15.
【解析】
中位数有2种情况,共有2n+1个数据时,从小到大排列后,,中位数应为第n+1个数据,可见,大于中位数与小于中位数的数据都为n个;共有2n+2个数据时,从小到大排列后,中位数为中间两个数据平均值,大小介于这两个数据之间,可见大于中位数与小于中位数的数据都为n+1个,所以这组数据中大于或小于这个中位数的数据各占一半,中位数有一个.
【详解】
解:总数据有5个,中位数是从小到大排,第3个数据为中位数,即15为这组数据的中位数.
故答案为:15
本题考查中位数的定义,解题关键是熟练掌握中位数的计算方法,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
23、1
【解析】
由于∠C=90°,∠ABC=60°,可以得到∠A=10°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=10°,BD=AD=6,再由10°角所对的直角边等于斜边的一半即可求出结果.
【详解】
∵∠C=90°,∠ABC=60°,
∴∠A=10°.
∵BD平分∠ABC,
∴∠CBD=∠ABD=∠A=10°,
∴BD=AD=6,
∴CD=BD=6×=1.
故答案为1.
本题考查了直角三角形的性质、含10°角的直角三角形、等腰三角形的判定以及角的平分线的性质.解题的关键是熟练掌握有关性质和定理.
二、解答题(本大题共3个小题,共30分)
24、(1)EO⊥FO,EO=FO;理由见解析;(2)①;②=2
【解析】
(1)由正方形的性质可得BO=CO,∠ABO=∠ACB=45°,∠BOC=90°,由“SAS”可证△BEO≌△CFO,可得OE=OF,∠BOE=∠COF,可证EO⊥FO;
(2)①由等腰直角三角形的性质可得∠EOG的度数;
②由∠EOF=∠ABF=90°,可得点E,点O,点F,点B四点共圆,可得∠EOB=∠BFE,通过证明△BOH∽△BIO,可得,即可得结论.
【详解】
解:(1)OE=OF,OE⊥OF,连接AC,BD,
∵点O是正方形ABCD的中心
∴点O是AC,BD的交点
∴BO=CO,∠ABO=∠ACB=45°,∠BOC=90°
∵CF=BE,∠ABO=∠ACB,BO=CO,
∴△BEO≌△CFO(SAS)
∴OE=OF,∠BOE=∠COF
∵∠COF+∠BOF=90°,
∴∠BOE+∠BOF=90°
∴∠EOF=90°,
∴EO⊥FO.
(2)
①∵OE=OF,OE⊥OF,
∴△EOF是等腰直角三角形,OG⊥EF
∴∠EOG=45°
②BH•BI的值是定值,
理由如下:
如图,连接DB,
∵AB=BC=CD=2
∴BD=2,
∴BO=
∵∠AOB=∠COB=45°,∠HBE=∠GBI=90°
∴∠HBO=∠IBO=135°
∵∠EOF=∠ABF=90°
∴点E,点O,点F,点B四点共圆
∴∠EOB=∠BFE,
∵EF⊥OI,AB⊥HF
∴∠BEF+∠BFE=90°,∠BEF+∠EIO=90°
∴∠BFE=∠BIO,
∴∠BOE=∠BIO,且∠HBO=∠IBO
∴△BOH∽△BIO
∴
∴BH•BI=BO2=2
本题相似综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,证明△BOH∽△BIO是本题的关键.
25、 (1)y= (2)114
【解析】
试题分析:(1)根据题目条件:如果购买5件以上,则超过5件的部分打7折即可得到y (元)与购买数量x (件)之间的函数关系;
(2)把x=3,x=6分别代入(1)中的函数关系式即可求出贷款数.
试题解析:
(1)根据商场的规定,
当0<x≤5时,y=20x,
当x>5时,y=20×5+(x﹣5)×20×0.7=100+14(x﹣5),
所以,货款y (元)与购买数量x (件)之间的函数关系是
Y= (x是正整数);
(2)当x=3时,y=20×3=60 (元)
当x=6时,y=100+14×(6﹣5)=114 (元).
26、(1)见解析;(1)BD=DE=CE的数量关系时,△CD′E是正三角形;(3)见解析.
【解析】
(1)根据轴对称的性质得到AD=AD`,即可证明△ABD≌△ACD′
(1)由(1)可得∠BAD=∠CAD′,∠B=∠ACD′,再根据轴对称的性质得到∠EAD′+∠CAE=∠BAD+∠CAE=∠DAE=∠BAC=60°,得到△CD′E是正三角形,即可解答
(3)利用勾股定理即可解答
【详解】
(1)证明:∵△ADE与△AD′E是关于AE的轴对称图形,
∴AD=AD′,
在△ABD和△ACD′中, ,
∴△ABD≌△ACD′(SSS);
(1)解:∵△ABD≌△ACD′,
∴∠BAD=∠CAD′,∠B=∠ACD′,
∵△ADE与△AD′E是关于AE的轴对称图形,
∴∠DAE=∠EAD′,DE=ED′,
∴∠EAD′+∠CAE=∠BAD+∠CAE=∠DAE=∠BAC=60°,
∵△CD′E是正三角形,
∴CE=CD′=ED′,
∵BD=CD′,DE=ED′,
∴BD=DE=CE;
(3)证明:∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=∠ACD′=45°,
∴∠ECD′=90°,
∴ED′1=CD′1+EC1,
∵BD=CD′,DE=ED′,
∴DE1=BD1+EC1.
此题考查全等三角形的判定与性质,勾股定理,等边三角形的判定与性质,解题关键在于利用全等三角形的性质进行解答
题号
一
二
三
四
五
总分
得分
分数/分
人数/人
70
7
80
90
1
100
8
年龄/岁
13
14
15
16
人数
1
1
2
1
2025届湖北省咸宁市名校九上数学开学达标检测模拟试题【含答案】: 这是一份2025届湖北省咸宁市名校九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖北省宜昌市秭归县九上数学开学质量检测模拟试题【含答案】: 这是一份2024年湖北省宜昌市秭归县九上数学开学质量检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖北省宜昌市宜昌中学数学九上开学统考模拟试题【含答案】: 这是一份2024年湖北省宜昌市宜昌中学数学九上开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。