搜索
    上传资料 赚现金
    英语朗读宝

    2025届湖南省湘潭市名校九上数学开学检测试题【含答案】

    2025届湖南省湘潭市名校九上数学开学检测试题【含答案】第1页
    2025届湖南省湘潭市名校九上数学开学检测试题【含答案】第2页
    2025届湖南省湘潭市名校九上数学开学检测试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届湖南省湘潭市名校九上数学开学检测试题【含答案】

    展开

    这是一份2025届湖南省湘潭市名校九上数学开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列图案中,不是中心对称图形的是( )
    A.
    B.
    C.
    D.
    2、(4分)如图,将等边ABC向右平移得到DEF,其中点E与点C重合,连接BD,若AB=2,则线段BD的长为( )
    A.2B.4C.D.2
    3、(4分)如图,已知正比例函数与一次函数的图象交于点.下面四个结论中正确的是( )
    A.B.
    C.当时,D.当时,
    4、(4分)如图,点M(xM,yM)、N(xN,yN)都在函数图象上,当0<xM<xN时,( )
    A.yMyND.不能确定yM与yN的大小关系
    5、(4分)如图,在中,,,垂直平分斜边,交于,是垂足,连接,若,则的长是( )
    A.B.4C.D.6
    6、(4分)下列说法正确的是( )
    A.两锐角分别相等的两个直角三角形全等
    B.两条直角边分别相等的两直角三角形全等
    C.一个命题是真命题,它的逆命题一定也是真命题
    D.经过旋转,对应线段平行且相等
    7、(4分)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )
    A.AB∥DC,AD∥BCB.AB=DC,AD=BC
    C.AO=CO,BO=DOD.AB∥DC,AD=BC
    8、(4分)如图这个几何体的左视图正确的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在四边形ABCD中,AB=CD,要使四边形ABCD是中心对称图形,只需添加一个条件,这个条件可以是 ▲ .(只要填写一种情况)
    10、(4分)在一次捐款活动中,某班第一小组8名同学捐款的金额单位:元如下表所示:这8名同学捐款的平均金额为______元
    11、(4分)如图,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=1.则GH的长为__________.
    12、(4分)计算· (a≥0)的结果是_________.
    13、(4分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,一次函数y=2x+4的图象分别与x轴,y轴教育点A、点B、点C为x轴一动点。
    (1)求A,B两点的坐标;
    (2)当ΔABC的面积为6时,求点C的坐标;
    (3)平面内是否存在一点D,使四边形ACDB使菱形,若存在,请直接写出点D的坐标;若不存在,请说明理由。
    15、(8分)如图,在正方形中,点分别是上的点,且.求证:.
    16、(8分)如图,的对角线、相交于点,对角线绕点逆时针旋转,分别交边、于点、.
    (1)求证:;
    (2)若,,.当绕点逆时针方向旋转时,判断四边形的形状,并说明理由.
    17、(10分)在矩形中,,,是边上一点,以点为直角顶点,在的右侧作等腰直角.
    (1)如图1,当点在边上时,求的长;
    (2)如图2,若,求的长;
    (3)如图3,若动点从点出发,沿边向右运动,运动到点停止,直接写出线段的中点的运动路径长.
    18、(10分)计算:
    (1)
    (2)
    (3)
    (4).
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)为了解一批灯管的使用寿命,适合采用的调查方式是_____(填“普查”或“抽样调查”)
    20、(4分)如图,在正方形ABCD中,E是边CD上的点.若△ABE的面积为4.5,DE=1,则BE的长为________.
    21、(4分)我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这7名同学成绩的______________(填”平均数”“众数”或“中位数”)
    22、(4分)函数y=kx的图象经过点(1,3),则实数k=_____.
    23、(4分)已知关于x的方程2x+m=x﹣3的根是正数,则m的取值范围是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)先化简,再求值,其中.
    25、(10分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E是AB的中点.已知AC=8cm,BD=6cm,求OE的长.
    26、(12分)嘉淇同学要证明命“两相对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.
    已知:如图,在四边形ABCD中,
    BC=AD,
    AB=____.
    求证:四边形ABCD是____四过形.
    (1)在方框中填空,以补全已知和求证;
    (2)按嘉淇的想法写出证明:
    证明:
    (3)用文宇叙述所证命题的逆命题为____________________.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据概念,知
    A、B、D既是轴对称图形,也是中心对称图形;
    C、既不是轴对称图形,也不是中心对称图形.
    故选C.
    2、D
    【解析】
    过点D作DH⊥CF于H,由平移的性质可得△DEF是等边三角形,由等边三角形的性质可求CH=1,DH=,由勾股定理可求解.
    【详解】
    解:如图,过点D作DH⊥CF于H,
    ∵将等边△ABC向右平移得到△DEF,
    ∴△DEF是等边三角形,
    ∴DF=CF=2,∠DFC=60°,
    ∵DH⊥CF,
    ∴∠FDH=30°,CH=HF=1,
    ∴DH=HF=,BH=BC+CH=3,
    ∴BD===2,
    故选:D.
    本题主要考查勾股定理,平移的性质,等边三角形的性质,掌握这些性质是解题的关键.
    3、A
    【解析】
    利用两函数图象结合与坐标轴交点进而分别分析得出答案.
    【详解】
    ∵,经过第一、三象限,
    ∴a>0,故A正确;
    ∵与y轴交在负半轴,
    ∴b>0,故B错误;
    ∵正比例函数,经过原点,
    ∴当x2时, ,故D错误。
    故选:A.
    此题考查一次函数和正比例函数的图象与性质,解题关键在于结合函数图象进行判断.
    4、C
    【解析】
    利用图象法即可解决问题;
    【详解】
    解:观察图象可知:当时,
    故选:C.
    本题考查反比例函数图象上的点的特征,解题的关键是读懂图象信息,学会利用图象解决问题,属于中考常考题型.
    5、D
    【解析】
    由垂直平分线的性质可得,,在中可求出的长,则可得到的长.
    【详解】
    垂直平分斜边






    故选:.
    本题主要考查垂直平分线的性质以及含角的直角三角形的性质,由条件得到是解题的关键.
    6、B
    【解析】
    A,B利用斜边和一条直角边对应相等的两个直角三角形全等,判定直角三角形全等时,也可以运用其它的方法.C利用命题与定理进行分析即可,D.利用旋转的性质即可解答;
    【详解】
    A、两个锐角分别相等的两个直角三角形不一定全等,故A选项错误;
    B、根据SAS可得,两条直角边分别相等的两个直角三角形全等,故B选项正确;
    C、一个命题是真命题,它的逆命题不一定是真命题.故C选项错误;
    D、经过旋转,对应线段相等,故D选项错误;
    故选:B.
    此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
    7、D
    【解析】
    根据平行四边形判定定理进行判断:
    A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;
    B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;
    C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;
    D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.
    故选D.
    考点:平行四边形的判定.
    8、C
    【解析】
    找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中,并且如果是几何体内部的棱应为虚线.
    【详解】
    解:根据题意从几何体的左面看所得到的图形是竖立的矩形,因中空的棱在内部,所以矩形中间的棱应为虚线且为横线,
    故选:C.
    此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、AD=BC(答案不唯一).
    【解析】
    根据平行四边形是中心对称图形,可以针对平行四边形的各种判定方法,给出相应的条件,得出此四边形是中心对称图形:
    ∵AB=CD,∴当AD=BC时,根据两组对边分别相等的四边形是平行四边形.
    当AB∥CD时,根据一组对边平行且相等的四边形是平行四边形.
    当∠B+∠C=180°或∠A+∠D=180°时,四边形ABCD是平行四边形.
    故此时是中心对称图形.
    故答案为AD=BC或AB∥CD或∠B+∠C=180°或∠A+∠D=180°等(答案不唯一).
    10、6.5
    【解析】
    根据加权平均数的计算公式用捐款的总钱数除以8即可得出答案.
    【详解】
    这8名同学捐款的平均金额为元,
    故答案为:.
    此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,属于基础题.
    11、1
    【解析】
    如图,过点F作于M,过点G作于N,设 GN、EF交点为P,根据正方形的性质可得,再根据同角的余角相等可得,然后利用“角边角”证明,根据全等三角形对应边相等可得,然后代入数据即可得解.
    【详解】
    如图,过点F作于M,过点G作于N,设 GN、EF交点为P
    ∵四边形ABCD是正方形





    在△EFM和△HGN中




    即GH的长为1
    故答案为:1.
    本题考查了矩形的线段长问题,掌握正方形的性质、全等三角形的性质以及判定定理是解题的关键.
    12、4a
    【解析】
    【分析】根据二次根式乘法法则进行计算即可得.
    【详解】
    =
    =
    =4a,
    故答案为4a.
    【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.
    13、1
    【解析】
    设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.
    【详解】
    设购买篮球x个,则购买足球个,
    根据题意得:,
    解得:.
    为整数,
    最大值为1.
    故答案为1.
    本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)点A(-2,0),B(0,4);(2)点C(-5,0)或(1,0);(3)D (-,4)或(,4).
    【解析】
    (1) 利用坐标轴上点的特点求解即可得出结论;
    (2) 根据△AOB的面积,可得出点C的坐标;
    (3)根据勾股定理求出AB的长,再利用菱形的性质可得结果,分两种情况讨论.
    【详解】
    (1)当x=0,y=4
    当y=0,x=-2
    ∴点A(-2,0),B(0,4)
    (2)因为A(-2,0),B(0,4)
    ∴OA=2,OB=4
    ΔABC的面积为
    因为ΔABC的面积为6
    ∴AC=3
    ∵A(-2,0)
    ∴点C(-5,0)或(1,0)
    (3)存在,理由:①如图:点C再A点左侧,
    ∵A(-2,0),B(0,4), ∴AB=,∵四边形ACDB为菱形,∴AC=AB=,∵ACBD, ∴AC=BD=AB=,∴D(-,4);
    ②如图:点C再A点右侧,
    ∵A(-2,0),B(0,4), ∴AB=,∵四边形ACDB为菱形,∴AC=AB=,∵ACBD, ∴AC=BD=AB=,∴D(,4);综上所述:D点的坐标为(-,4),(,4)
    本题考查了一次函数的应用、菱形的性质以及三角形的面积问题,注意掌握数形结合思想和分类讨论的思想.
    15、见解析
    【解析】
    证得∠ADE=∠FAB,由ASA证得△DAE≌△ABF,即可得出结论.
    【详解】
    四边形是正方形


    本题考查了正方形的性质、直角三角形的性质、全等三角形的判定与性质、熟练掌握正方形的性质是关键.
    16、(1)证明见解析;(2)平行四边形DEBF是菱形,证明见解析.
    【解析】
    (1)由“ASA”可证△COE≌△AOF,可得CE=AF;
    (2)由勾股定理的逆定理可证∠DBC=90°,通过证明四边形DEBF是平行四边形,可得DO=BO=1=BC,可得∠BOC=45°,由旋转的性质可得∠EOC=45°,可得EF⊥BD,即可证平行四边形DEBF是菱形.
    【详解】
    证明:(1)∵四边形ABCD是平行四边形
    ∴CD∥AB,AO=CO,AB=CD
    ∴∠DCO=∠BAO,且AO=CO,∠AOF=∠COE
    ∴△COE≌△AOF(ASA)
    ∴CE=AF,
    (2)四边形BEDF是菱形
    理由如下
    如图,连接DF,BE,
    ∵DB=2,BC=1,
    ∴DB2+BC2=5=CD2,
    ∴∠DBC=90°
    由(1)可得AF=CE,且AB=CD
    ∴DE=BF,且DE∥BF
    ∴四边形DEBF是平行四边形
    ∴DO=BO=1,
    ∴OB=BC=1,且∠OBC=90°
    ∴∠BOC=45°,
    ∵当AC绕点O逆时针方向旋转45°时
    ∴∠EOC=45°
    ∴∠EOB=90°,即EF⊥BD
    ∴平行四边形DEBF是菱形
    本题考查了旋转的性质,全等三角形的判定和性质,平行四边形的判定和性质,证明∠DBC=90°是本题的关键.
    17、(1);(2);(3)线段的中点的运动路径长为.
    【解析】
    (1)如图1中,证明△ABE≌△ECF(AAS),即可解决问题.
    (2)如图2中,延长DF,BC交于点N,过点F作FM⊥BC于点M.证明△EFM≌△DNC(AAS),设NC=FM=x,利用勾股定理构建方程即可解决问题.
    (3)如图3中,在BC上截取BM=BA,连接AM,MF,取AM的中点H,连接HQ.由△ABE∽△AMF,推出∠AMF=∠ABE=90°,由AQ=FQ,AH=MH,推出,HQ∥FM,推出∠AHQ=90°,推出点Q的运动轨迹是线段HQ,求出MF的长即可解决问题.
    【详解】
    (1)如图1中,
    四边形是矩形,

    ,,
    ,,



    (2)如图2中,延长,交于点,过点作于点.
    同理可证,
    设,则,
    ,,



    ,,,
    即在中,,
    在中,,
    在中,,
    即,解得或(舍弃),即,
    (3)如图3中,在上截取,连接,,取的中点,连接.




    ,,
    ,,
    ,,

    点的运动轨迹是线段,
    当点从点运动到点时,,


    线段的中点的运动路径长为.
    本题考查了全等三角形、勾股定理、相似三角形,掌握矩形的性质及全等三角形的性质和判定、利用勾股定理列方程、相似三角形的性质是解题的关键.
    18、(1);(2);(3);(4).
    【解析】
    (1)先进行二次根式的乘除运算,然后合并即可;
    (2)先把各二次根式化简为最简二次根式,然后去括号合并即可;
    (3)利用平方差公式和完全平方公式计算;
    (4)利用完全平方公式和分母有理化得到原式,然后去括号后合并即可.
    【详解】
    解:(1)原式



    (2)原式

    (3)原式


    (4)原式


    故答案为(1);(2);(3);(4).
    本题考查二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、抽样调查.
    【解析】
    根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
    【详解】
    解:为了解一批灯管的使用寿命,调查具有破坏性,适合采用的调查方式是抽样调查,
    故答案为:抽样调查.
    本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    20、
    【解析】
    由S正方形ABCD=2S△ABE=9,先求出正方形的边长,再在Rt△BCE中,利用勾股定理即可解决问题.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB=CD=BC,∠C=90°,
    ∵S正方形ABCD=2S△ABE=9,
    ∴AB=CD=BC=3,
    ∵DE=1,
    ∴EC=2,
    在Rt△BCE中,∵∠C=90°,BC=3,EC=2,
    ∴BE=
    故答案为:.
    本题考查正方形的性质、勾股定理等知识,解题的关键是S正方形ABCD=2S△ABE的应用,记住这个结论,属于中考常考题型.
    21、中位数
    【解析】
    七名选手的成绩,如果知道中位数是多少,与自己的成绩相比较,就能知道自己是否能进入前四名,因为中位数是七个数据中的第四个数,
    【详解】
    解:因为七个数据从小到大排列后的第四个数是这七个数的中位数,知道中位数,然后与自己的成绩比较,就知道能否进入前四,即能否参加决赛.
    故答案为:中位数.
    考查中位数、众数、平均数反映一组数据的特征,中位数反映之间位置的数,说明比它大的占一半,比它小的占一半;众数是出现次数最多的数,平均数反映一组数据的平均水平和集中趋势,理解意义是正确判断的前提.
    22、3
    【解析】
    试题分析:直接把点(1,3)代入y=kx,然后求出k即可.
    解:把点(1,3)代入y=kx,
    解得:k=3,
    故答案为3
    【点评】本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.
    23、m<﹣1
    【解析】
    根据关于x的方程2x+m=x﹣1的根是正数,可以求得m的取值范围.
    【详解】
    解:由方程2x+m=x﹣1,得x=﹣m﹣1,
    ∵关于x的方程2x+m=x﹣1的根是正数,
    ∴﹣m﹣1>0,
    解得,m<﹣1,
    故答案为:m<﹣1.
    本题考查解一元一次方程和一元一次不等式,解答本题的关键是明确题意,求出m的取值范围.
    二、解答题(本大题共3个小题,共30分)
    24、x;2019.
    【解析】
    直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案.
    【详解】
    原式

    当时,原式.
    此题主要考查了分式的化简求值,正确化简分式是解题关键.
    25、OE=cm
    【解析】
    根据菱形的性质及三角形中位线定理解答.
    【详解】
    ∵ABCD是菱形,∴OA=OC,OB=OD,OB⊥OC.
    又∵AC=8cm,BD=6cm,∴OA=OC=4cm,OB=OD=3cm.
    在直角△BOC中,由勾股定理得:BC5(cm).
    ∵点E是AB的中点,∴OE是△ABC的中位线,∴OEcm.
    本题考查了菱形的性质及三角形中位线定理.求出菱形的边长是解题的关键.
    26、(1)CD;平行;(2)见解析;(3)平行四边形的对边相等
    【解析】
    (1)CD;平行;
    (2)证明:连接BD.
    在△ABD和△CDB中,
    ∵AB=CD,AD=CB,BD=DB,
    ∴△ABD≌△CDB.
    ∴∠1=∠2,∠3=∠4,
    ∴AB//CD,AD//CB,
    ∴四边形ABCD是平行四边形.
    (3)平行四边形的对边相等
    考点:平行四边形的判定,全等三角形的判定
    题号





    总分
    得分
    批阅人
    金额元
    5
    6
    7
    10
    人数
    2
    3
    2
    1

    相关试卷

    2025届湖南省长沙市名校九上数学开学经典模拟试题【含答案】:

    这是一份2025届湖南省长沙市名校九上数学开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届湖南省怀化市名校九上数学开学综合测试模拟试题【含答案】:

    这是一份2025届湖南省怀化市名校九上数学开学综合测试模拟试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖南省岳阳市名校九上数学开学调研试题【含答案】:

    这是一份2024年湖南省岳阳市名校九上数学开学调研试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map