![2025届湖南省岳阳市君山区数学九年级第一学期开学经典模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16232334/0-1728463173356/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届湖南省岳阳市君山区数学九年级第一学期开学经典模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16232334/0-1728463173406/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届湖南省岳阳市君山区数学九年级第一学期开学经典模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16232334/0-1728463173454/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届湖南省岳阳市君山区数学九年级第一学期开学经典模拟试题【含答案】
展开
这是一份2025届湖南省岳阳市君山区数学九年级第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在中,,,点为上一点,,于点,点为的中点,连接,则的长为( )
A.B.C.D.
2、(4分)如图,Rt△ABC中,AB=9,BC=6,∠B=90˚,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )
A.6B.5C.4D.3
3、(4分)如图,在任意四边形ABCD中,M,N,P,Q分别是AB,BC,CD,DA上的点,对于四边形MNPQ的形状,以下结论中,错误的是
A.当M,N,P,Q是各边中点,四边MNPQ一定为平行四边形
B.当M,N,P,Q是各边中点,且时,四边形MNPQ为正方形
C.当M,N、P,Q是各边中点,且时,四边形MNPQ为菱形
D.当M,N、P、Q是各边中点,且时,四边形MNPQ为矩形
4、(4分)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:
①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是( )
A.2B.3C.4D.5
5、(4分)已知为常数,点在第二象限,则关于的方程根的情况是()
A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断
6、(4分)如图,将一个矩形纸片ABCD,沿着BE折叠,使C、D两点分别落在点、处若,则的度数为
A.B.C.D.
7、(4分)如图,已知AB=DC,下列所给的条件不能证明△ABC≌△DCB的是( )
A.∠A=∠D=90°B.∠ABC=∠DCBC.∠ACB=∠DBCD.AC=BD
8、(4分)如图所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于( )
A.135°B.180°C.225°D.270°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,正方形ABCD的边长为2,点E、F分别是CD、BC的中点,AE与DF交于点P,连接CP,则CP=_____.
10、(4分)当x=________时,分式的值为零.
11、(4分)如图,在中,角是边上的一点,作垂直, 垂直,垂足分别为,则的最小值是______.
12、(4分)如图,菱形的两个顶点坐标为,,若将菱形绕点以每秒的速度逆时针旋转,则第秒时,菱形两对角线交点的坐标为__________.
13、(4分)分式与的最简公分母是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)化简求值:,其中.
(2)解不等式组:,并把它的解集在数轴上表示出来.
15、(8分)某学校为了了解男生的体能情况,规定参加测试的每名男生从“实心球”,“立定跳远”,“引体向上”,“耐久跑1000米”四个项目中随机抽取一项作为测试项目.
(1)八年(1)班的25名男生积极参加,参加各项测试项目的统计结果如图,参加“实心球”测试的男生人数是 人;
(2)八年(1)班有8名男生参加了“立定跳远”的测试,他们的成绩(单位:分)如下:95,100,82,90,89,90,90,85
①“95,100,82,90,89,90,90,85”这组数据的众数是 ,中位数是 .
②小聪同学的成绩是92分,他的成绩如何?
③如果将不低于90分的成绩评为优秀,请你估计八年级80名男生中“立定跳远”成绩为优秀的学生约为多少人?
16、(8分)如图,直线l1:y=x+6与直线l2:y=kx+b相交于点A,直线l1与y轴相交于点B,直线l2与y轴负半轴相交于点C,OB=2OC,点A的纵坐标为1.
(1)求直线l2的解析式;
(2)将直线l2沿x轴正方向平移,记平移后的直线为l1,若直线l1与直线l1相交于点D,且点D的横坐标为1,求△ACD的面积.
17、(10分)函数 y=(m-2)x+m2-4 (m为常数).
(1)当m取何值时, y是x的正比例函数?
(2) 当m取何值时, y是x的一次函数?
18、(10分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:
(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;
(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知方程,如果设,那么原方程可以变形成关于的方程为__________.
20、(4分)函数中,自变量的取值范围是___.
21、(4分)若关于x的分式方程有增根,则k的值为__________.
22、(4分)如图,在中,,,,过点作,垂足为,则的长度是______.
23、(4分)如图,△ABC与△A'B'C'是位似图形,点O是位似中心,若OA=2AA',S△ABC=8,则S△A'B'C'=___.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平行四边形ABCD中,点E.F分别在AB、CD上,AE=CF,连接AF,BF,DE,CE,分别交于H、G.
求证:(1)四边形AECF是平行四边形.(2)EF与GH互相平分.
25、(10分) “一路一带”倡议6岁了!到日前为止,中国已与126个国家和29个国际组织签署174份合作文件,共建“一路一带”国家已由亚欧延伸至非洲、拉美、南太等区域.截止2019年一季度末,人民币海外基金业务规模约3000亿元,其投资范围覆盖交通运输、电力能源、金融业和制造业等重要行业,投资行业统计图如图所示.
(1)求投资制造业的基金约为多少亿元?
(2)按照规划,中国将继续对“一路一带”基金增加投入,到2019年三季度末,共增加投入630亿元,假设平均每季度的增长率相等,求平均每季度的增长率是多少?
26、(12分)某社区决定把一块长,宽的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边为何值时,活动区的面积达到?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
先证明Rt△BDE≌Rt△BCE(HL),得到点E是DC的中点,进而得出EF是△ADC的中位线,再根据已知数据即可得出EF的长度.
【详解】
解:∵,
∴∠BED=∠BEC
在Rt△BDE与Rt△BCE中
∴Rt△BDE≌Rt△BCE(HL)
∴DE=CE
∴点E是CD的中点,
又∵点F是AC的中点,
∴EF是△ADC的中位线,
∴
∵,,,
∴AD=AB-BC=4
∴EF=2
故答案为:B.
本题考查了全等三角形的证明及中位线的应用,解题的关键是得到EF是△ADC的中位线,并熟知中位线的性质.
2、C
【解析】
设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.
【详解】
解:设BN=x,由折叠的性质可得DN=AN=9-x,
∵D是BC的中点,
∴BD=3,
在Rt△NBD中,x2+32=(9-x)2,
解得x=1.
即BN=1.
故选:C.
此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.
3、B
【解析】
连接AC、BD,根据三角形中位线定理得到,,,,根据平行四边形、矩形、菱形、正方形的判定定理判断即可.
【详解】
解:连接AC、BD交于点O,
,N,P,Q是各边中点,
,,,,
,,
四边MNPQ一定为平行四边形,A说法正确,不符合题意;
时,四边形MNPQ不一定为正方形,B说法错误,符合题意;
时,,
四边形MNPQ为菱形,C说法正确,不符合题意;
时,,
四边形MNPQ为矩形,D说法正确,不符合题意.
故选B.
本题考查的是中点四边形,掌握平行四边形、矩形、菱形、正方形的判定定理、三角形中位线定理是解题的关键.
4、D
【解析】
①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;
②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;
③因为∠BAC=90°,根据平行四边形的面积公式可作判断;
④根据三角形中位线定理可作判断;
⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.
【详解】
①∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵四边形ABCD是平行四边形,
∴AD∥BC,∠ABC=∠ADC=60°,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴AB=BE=1,
∴△ABE是等边三角形,
∴AE=BE=1,
∵BC=2,
∴EC=1,
∴AE=EC,
∴∠EAC=∠ACE,
∵∠AEB=∠EAC+∠ACE=60°,
∴∠ACE=30°,
∵AD∥BC,
∴∠CAD=∠ACE=30°,
故①正确;
②∵BE=EC,OA=OC,
∴OE=AB=,OE∥AB,
∴∠EOC=∠BAC=60°+30°=90°,
Rt△EOC中,OC=,
∵四边形ABCD是平行四边形,
∴∠BCD=∠BAD=120°,
∴∠ACB=30°,
∴∠ACD=90°,
Rt△OCD中,OD=,
∴BD=2OD=,故②正确;
③由②知:∠BAC=90°,
∴S▱ABCD=AB•AC,
故③正确;
④由②知:OE是△ABC的中位线,
又AB=BC,BC=AD,
∴OE=AB=AD,故④正确;
⑤∵四边形ABCD是平行四边形,
∴OA=OC=,
∴S△AOE=S△EOC=OE•OC=××,
∵OE∥AB,
∴,
∴,
∴S△AOP= S△AOE==,故⑤正确;
本题正确的有:①②③④⑤,5个,
故选D.
本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.
5、B
【解析】
试题分析:已知点P(a,c)在第二象限,可得a<0,c>0,所以ac<0,即可判定△=b2﹣4ac>0,所以方程有两个不相等的实数根.故选B.
考点:根的判别式;点的坐标.
6、B
【解析】
根据折叠前后对应角相等即可得出答案.
【详解】
解:设∠ABE=x,
根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,
所以50°+x+x=90°,
解得x=20°.
故选B.
本题考核知识点:轴对称. 解题关键点:理解折叠的意义.
7、C
【解析】
解:AB=DC,BC为△ABC和△DCB的公共边,
A、∠A=∠D=90°满足“HL”,能证明△ABC≌△DCB;
B、∠ABC=∠DCB满足“边角边”,能证明△ABC≌△DCB;
C、∠ACB=∠DBC满足“边边角”,不能证明△ABC≌△DCB;
D、AC=BD满足“边边边”,能证明△ABC≌△DCB.
故选C.
8、C
【解析】
首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=90°,然后即可求出答案.
【详解】
在△ABC和△AEF中,
∴△ABC≌△AEF(SAS)
∴∠5=∠BCA
∴∠1+∠5=∠1+∠BCA=90°
在△ABD和△AEF中
∴△ABD≌△AEH(SAS)
∴∠4=∠BDA
∴∠2+∠4=∠2+∠BDA=90°
∵∠3=45°
∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°
故答案选C.
本题考查的是全等三角形的判定与性质,能够根据全等将所求角转化是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
由△ADE≌△DCF可导出四边形CEPF对角互补,而CE=CF,于是将△CEP绕C点逆时针旋转90°至△CFG,可得△CPG是等腰直角三角形,从而PG=PF+FG=PF+PE=CP,求出PE和PF的长度即可求出PC的长度.
【详解】
解:如图,作CG⊥CP交DF的延长线于G.
则∠PCF+∠GCF=∠PCG=90°,
∵四边形ABCD是边长为2的正方形,
∴AD=CD=BC=AB=2,∠ADC=∠DCB=90°,
∵E、F分别为CD、BC中点,
∴DE=CE=CF=BF=1,
∴AE=DF=,
∴DP==,
∴PE=,PF=,
在△ADE和△DCF中:
∴△ADE≌△DCF(SAS),
∴∠AED=∠DFC,
∴∠CEP=∠CFG,
∵∠ECP+∠PCF=∠DCB=90°,
∴∠ECP=∠FCG,
在△ECP和△FCG中:
∴△ECP≌△FCG(ASA),
∴CP=CG,EP=FG,
∴△PCG为等腰直角三角形,
∴PG=PF+FG=PF+PE==CP,
∴CP=.
故答案为:.
本题考查了正方形的性质,全等三角形的判定与性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
10、3
【解析】
根据分式值为0的条件:分子为0,分母不为0,即可得答案.
【详解】
∵分式的值为零,
∴x-3=0,x+5≠0,
解得:x=3,
故答案为:3
本题考查分式值为0的条件,要使分式值为0,则分子为0,分母不为0;熟练掌握分式值为0的条件是解题关键.
11、
【解析】
根据已知条件得出四边形AEPF为矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.
【详解】
连接AP,
四边形AFPE是矩形,
要使EF最小,只要AP最小即可,
过点A作于P,此时AP最小,
在直角三角形中,
由勾股定理得:BC=5,
由三角形面积公式得:
,
即,
故答案为:.
本题是矩形的判定与性质和直角三角形结合考查的题型,找出与EF相等的线段,结合垂线段最短的性质是解题的关键.
12、(-,0)
【解析】
先计算得到点D的坐标,根据旋转的性质依次求出点D旋转后的点坐标,得到变化的规律即可得到答案.
【详解】
∵菱形的两个顶点坐标为,,
∴对角线的交点D的坐标是(2,2),
∴,
将菱形绕点以每秒的速度逆时针旋转,
旋转1次后坐标是(0, ),
旋转2次后坐标是(-2,2),
旋转3次后坐标是(-,0),
旋转4次后坐标是(-2,-2),
旋转5次后坐标是(0,-),
旋转6次后坐标是(2,-2),
旋转7次后坐标是(,0),
旋转8次后坐标是(2,2)
旋转9次后坐标是(0,,
由此得到点D旋转后的坐标是8次一个循环,
∵,
∴第秒时,菱形两对角线交点的坐标为(-,0)
故答案为:(-,0).
此题考查了菱形的性质,旋转的性质,勾股定理,直角坐标系中点坐标的变化规律,根据点D的坐标依次求出旋转后的坐标得到变化规律是解题的关键.
13、
【解析】
分式的最简公分母通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,即可得解.
【详解】
由题意,得
其最简公分母是,
故答案为:.
此题主要考查分式的最简公分母,熟练掌握,即可解题.
三、解答题(本大题共5个小题,共48分)
14、(1),原式;(2).把它的解集在数轴上表示出来见解析.
【解析】
(1)首先计算括号里面同分母的分式减法,然后除以括号外面的分式时,要乘以它的倒数,然后进行约分化简,代入求值;
(2)分别解两个不等式,得到不等式组的解集,然后在数轴上表示解集即可.
【详解】
解:(1),
把代入得:原式;
(2),
由①得,
由②得,
∴原不等式组的解集是.
在数轴上表示解集如下:
解题关键:
(1)化简过程中运用到分式的通分,找准最简公分母是关键;还运用到分式的约分,利用乘法公式把分式的分子分母因式分解之后进行约分;
(2)熟练掌握不等式的解法,在数轴上表示解集时,一定注意是空心点还是实心点.
15、(1)7;(2)①90;90;②小聪同学的成绩处于中等偏上;③有50人.
【解析】
(1)由统计结果图即可得出结果;
(2)①根据已知数据通过由小到大排列确定出众数与中位数即可;②求出8名男生成绩的平均数,然后用92与平均数进行比较即可;③求出成绩不低于90分占的百分比,乘以80即可得到结果.
【详解】
(1)由统计结果图得:参加“实心球”测试的男生人数是7人,
故答案为:7;
(2)①将95,100,82,90,89,90,90,85这组数据由小到大排列:82,85,89,90,90,90,95,100;
根据数据得:众数为90,中位数为90,
故答案为:90;90;
②8名男生平均成绩为:=90.125,
∵92>90.125,
∴小聪同学的成绩处于中等偏上;
③8名男生中达到优秀的共有5人,
根据题意得:×80=50(人),
则估计八年级80名男生中“立定跳远”成绩为优秀的学生约为50人.
本题考查了众数、中位数、平均数、用样本估计总体等知识,熟练掌握众数、中位数、平均数的概念是解题的关键.
16、(1)y=﹣2x﹣1;(2)2
【解析】
(1)根据y轴上点的坐标特征可求B点坐标,再根据OB=2OC,可求C点坐标,根据点A的纵坐标为1,可求A点坐标,根据待定系数法可求直线l2的解析式;
(2)根据点D的横坐标为1,可求D点坐标,再用长方形面积减去1个小三角形面积即可求解.
【详解】
解:(1)∵当x=0时,y=0+6=6,
∴B(0,6),
∵OB=2OC,
∴C(0,﹣1),
∵点A的纵坐标为1,
∴﹣1=x+6,
解得x=﹣1,
∴A(﹣1,1),
则,
解得.
故直线l2的解析式为y=﹣2x﹣1;
(2)∵点D的横坐标为1,
∴y=1+6=7,
∴D(1,7),
∴△ACD的面积=10×4﹣×1×6﹣×4×4﹣×1×10=2.
考查了一次函数图象与几何变换,两条直线相交或平行问题,待定系数法,关键是求出C点坐标,A点坐标,D点坐标.
17、(1)m=-2;(2) m ≠2时,y是x的一次函数
【解析】
(1)根据正比例函数的定义:一般地,形如y=kx(k是常数,k ≠0)的函数,叫做正比例函数,即可求解;
(2)根据一次函数的定义:一般地,形如y=kx+b(k,b是常数,k ≠0)的函数,叫做一次函数,即可求解.
【详解】
(1)当m2-4=0且m-2≠0时,y是x的正比例函数,
解得m=-2;
(2)当m-2≠0时,即m ≠2时,y是x的一次函数 .
本题考查正比例函数的定义,一次函数的定义.
18、 (1)甲;(2)乙.
【解析】
(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;
(2)先用加权平均数公式,计算甲、乙的平均数,然后根据计算结果,结果大的胜出.
【详解】
(1)=(73+80+82+83)÷4=79.5,
∵80.25>79.5,
∴应选派甲;
(2)=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,
=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,
∵79.5<80.4,
∴应选派乙.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(或)
【解析】
观察方程的两个分式具备的关系,如果设,则原方程另一个分式为可用换元法转化为关于y的分式方程.去分母即可.
【详解】
∵=
∴把代入原方程得:,
方程两边同乘以y整理得:.
此题考查换元法解分式方程,解题关键在利用换元法转化即可.
20、
【解析】
根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
【详解】
根据题意得:,解得:.
故答案是:.
函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
21、或
【解析】
分式方程去分母转化为整式方程,由分式方程有增根,得到最简公分母为0求出的值,代入整式方程求出的值即可.
【详解】
解:
去分母得:,
整理得:
由分式方程有增根,得到,
解得:或,
把代入整式方程得:;
把代入整式方程得:,
则的值为或.
故答案为:或
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
22、1
【解析】
由已知可得Rt△ABC是等腰直角三角形,且,得出CD=AD=BD=AB=1.
【详解】
∵CA=CB.∠ACB=90°,CD⊥AB,
∴AD=DB,
∴CD=AB=1,
故答案为1.
本题考查了等腰直角三角形的性质,直角三角形斜边中线的性质,解题的关键是灵活运用等腰直角三角形的性质求边的关系.
23、1.
【解析】
解:由题易知△ABC∽△A′B′C′,
因为OA=2AA′,所以OA′=OA+AA′=3AA′,
所以,
又S△ABC=8,所以.
故答案为:1.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
(1)根据四边形ABCD是平行四边形,由平行四边形的性质可得:,,
根据,利用平行四边形的判定定理可得:四边形AECF是平行四边形,
由得四边形AECF是平行四边形,根据平行四边形的性质可得:,
根据,,,可得:,,根据平行四边形的判定定理可得:四边形BFDE是平行四边形,再根据平行四边形的性质可得:,根据平行四边形的判定定理可得:四边形EGFH是平行四边形,由平行四边形的性质可得:
与GH互相平分.
【详解】
四边形ABCD是平行四边形,
,,
,
四边形AECF是平行四边形,
由得:四边形AECF是平行四边形,
,
,,,
,,
四边形BFDE是平行四边形,
,
四边形EGFH是平行四边形,
与GH互相平分.
本题主要考查平行四边形的判定定理和平行四边形的性质,解决本题的关键是要熟练掌握平行四边形的判定定理和平行四边形的性质.
25、(1)630亿元;(2)10%
【解析】
(1)由投资电力能源所在扇形的圆心角求出投资电力能源所占比例,再利用投资制造业的基金=投资总金额×D所占的比例,即可求出结论;
(2)设平均每季度的增长率是x,根据2019年一季度末及三季度末的投资总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
【详解】
(1)×100%=20%,3000×(1-12%-15%-20%-32%)=630(亿元).
(2)设平均每季度的增长率是x,依题意,得:
3000(1+x)2=3000+630,
解得:x1=0.1=10%,x2=-2.1(舍去).
答:平均每季度增长10%.
考查了一元二次方程的应用以及用样本估计总体,解题的关键是:(1)求出图中B所占比例;(2)找准等量关系,正确列出一元二次方程.
26、当时,活动区的面积达到
【解析】
根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.
【详解】
解:设绿化区宽为y,则由题意得
.
即
列方程:
解得 (舍),.
∴当时,活动区的面积达到
本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.
题号
一
二
三
四
五
总分
得分
选手
表达能力
阅读理解
综合素质
汉字听写
甲
85
78
85
73
乙
73
80
82
83
相关试卷
这是一份2025届湖南省岳阳市汨罗市弼时片区九年级数学第一学期开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届湖南省岳阳市城区十四校联考数学九年级第一学期开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份126,2024年湖南省岳阳市君山区中考一模数学试题,共19页。试卷主要包含了细心选一选,精心填一填,仔细画一画,用心做一做等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)