![2025届湖南省张家界慈利县联考数学九年级第一学期开学达标检测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16232337/0-1728463187942/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届湖南省张家界慈利县联考数学九年级第一学期开学达标检测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16232337/0-1728463187979/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届湖南省张家界慈利县联考数学九年级第一学期开学达标检测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16232337/0-1728463188013/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届湖南省张家界慈利县联考数学九年级第一学期开学达标检测试题【含答案】
展开
这是一份2025届湖南省张家界慈利县联考数学九年级第一学期开学达标检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某企业1~5月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是( ).
A.1~2月份利润的增长快于2~3月份利润的增长
B.1~4月份利润的极差与1~5月份利润的极差不同
C.1~5月份利润的众数是130万元
D.1~5月份利润的中位数为120万元
2、(4分)若点P(-2,a)在第二象限,则a的值可以是( )
A.1B.-1C.0D.-2
3、(4分)如图,中,,将绕点顺时针旋转得.当点的对应点恰好落在上时,的度数是( )
A.B.
C.D.
4、(4分)一次函数的图象经过原点,则的值为( )
A.B.C.D.
5、(4分)直线y=2x+2沿y轴向下平移6个单位后与x轴的交点坐标是( )
A.(-4,0)B.(-1,0)C.(0,2)D.(2,0)
6、(4分)下列图形中是中心对称图形,但不是轴对称图形的是( )
A.B.C.D.
7、(4分)用配方法解方程x2﹣4x﹣2=0变形后为( )
A.(x﹣4)2=6 B.(x﹣2)2=6 C.(x﹣2)2=2 D.(x+2)2=6
8、(4分)下列调查中,适合用全面调查方法的是( )
A.了解某校数学教师的年龄状况B.了解一批电视机的使用寿命
C.了解我市中学生的近视率D.了解我市居民的年人均收入
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知正n边形的每一个内角为150°,则n=_____.
10、(4分)若代数式的值大于﹣1且小于等于2,则x的取值范围是_____.
11、(4分)在菱形中,其中一个内角为,且周长为,则较长对角线长为__________.
12、(4分)如图,在平行四边形 ABCD 中, AD 2 AB ;CF 平分 BCD 交 AD 于 F ,作 CE AB , 垂足 E 在边 AB 上,连接 EF .则下列结论:① F 是 AD 的中点; ② S△EBC 2S△CEF;③ EF CF ; ④ DFE 3AEF .其中一定成立的是_____.(把所有正确结论的序号都填在横线上)
13、(4分)一组数据:24,58,45,36,75,48,80,则这组数据的中位数是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算
15、(8分)如图,一次函数的图象与反比例函数的图象交于点和点.
(1)求,的值;
(2)根据图象判断,当不等式成立时,的取值范围是什么?
16、(8分)将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)连接BF,求证:CF=EF.
(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.
(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.
17、(10分)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G.F为AB边上一点,连接CF,且∠ACF=∠CBG.
(1)求证:BG=CF;
(2)求证:CF=2DE;
(3)若DE=1,求AD的长
18、(10分)(本题满分6分)如图所示的方格地面上,标有编号1、2、3的3
个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地
面完全相同.
(1)一只自由飞行的小鸟,将随意地落在图中所示的方格地面上,求
小鸟落在草坪上的概率;
(2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,
则编号为1、2的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)方程的解为_____.
20、(4分)如图,矩形ABCD的对角线AC与BD交于点0,过点O作BD的垂线分别交AD、BC于E.F两点,若AC =2,∠DAO =300,则FB的长度为________ .
21、(4分)(2017四川省德阳市)某校欲招聘一名数学老师,甲、乙两位应试者经审查符合基本条件,参加了笔式和面试,他们的成绩如右图所示,请你按笔试成绩40%,面试成绩点60%选出综合成绩较高的应试者是____.
22、(4分)一个正多边形的每个外角等于72°,则它的边数是__________.
23、(4分)如图,函数y=bx和y=ax+4的图象相交于点A(1,3),则不等式bx<ax+4的解集为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,平行四边形中,点分别是的中点.求证.
25、(10分)已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.
26、(12分)己知:如图1,⊙O的半径为2, BC是⊙O的弦,点A是⊙O上的一动点.
图1 图2
(1)当△ABC的面积最大时,请用尺规作图确定点A位置(尺规作图只保留作图痕迹, 不需要写作法);
(2)如图2,在满足(1)条件下,连接AO并延长交⊙O于点D,连接BD并延长交AC 的延长线于点E,若∠BAC=45° ,求AC2+CE2的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据折线图1~2月以及2~3月的倾斜程度可以得出:
2~3月份利润的增长快于1~2月份利润的增长;故A选项错误,
1~4月份利润的极差为:130-100=30,1~5月份利润的极差为:130-100=30;故B选项错误;
根据只有130出现次数最多,∴130万元是众数,故C选项正确;
1~5月份利润的中位数是:从小到大排列后115万元位于最中间,故D选项错误
2、A
【解析】
根据第二象限内点的纵坐标是正数判断.
【详解】
∵点P(-2,a)在第二象限,
∴a>0,
∴1、0、-1、-2四个数中,a的值可以是1.
故选A.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
3、C
【解析】
由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.
【详解】
∵∠ACB=80°,
∵将△ABC绕点C顺时针旋转得△EDC,
∴AC=CE,∠ACE=∠ACB=80°,
∴∠CAE=∠AEC=50°.
故选:C.
考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.
4、B
【解析】
分析:根据一次函数的定义及函数图象经过原点的特点,求出m的值即可.
详解:∵一次函数的图象经过原点,
∴m=1.
故选B.
点睛:本题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b(k≠1)中,当b=1时函数图象经过原点.
5、D
【解析】
试题分析:将y=2x+2沿y轴向下平移6个单位后的解析式为:y=2x-4,当y=0时,则x=2,即图像与x轴的交点坐标为(2,0).
考点:一次函数的性质
6、D
【解析】
将一个图形沿着一条直线翻折后两侧能够完全重合,这样的图形是轴对称图形;将一个图形绕着一个点旋转180°后能与自身完全重合,这样的图形是中心对称图形,根据定义依次判断即可得到答案.
【详解】
A、是轴对称图形,是中心对称图形;
B、是轴对称图形,是中心对称图形;
C、是轴对称图形,不是中心对称图形;
D、不是轴对称图形,是中心对称图形,
故选:D.
此题考查轴对称图形的定义,中心对称图形的定义,熟记定义并掌握图形的特点是解题的关键.
7、B
【解析】
在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.
【详解】
把方程x2-4x-2=0的常数项移到等号的右边,得到x2-4x=2
方程两边同时加上一次项系数一半的平方,得到x2-4x+4=2+4
配方得(x-2)2=1.
故选B.
配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
8、A
【解析】
根据全面调查适用于:调查对象较少,且容易进行,即可选出答案.
【详解】
A.人数不多,容易调查,适合全面调查,正确;
B.数量较多,不容易进行,适合抽查,错误;
C.人数较多,不容易进行,适合抽查,错误;
D.人数较多,不容易全面调查,适合抽查,错误.
故选A.
本题目考查调查方式的选择,难度不大,熟练掌握全面调查的适用条件是顺利解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
试题解析:由题意可得:
解得
故多边形是1边形.
故答案为1.
10、﹣1≤x<1.
【解析】
先根据题意得出关于x的不等式组,求出x的取值范围即可.
【详解】
解:根据题意,得:
解不等式①,得:x<1,
解不等式②,得:x≥-1,
所以-1≤x<1,
故答案为:-1≤x<1.
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
11、
【解析】
由菱形的性质可得,,,由直角三角形的性质可得,由勾股定理可求的长,即可得的长.
【详解】
解:如图所示:
菱形的周长为,
,,,
,
,
,
.
.
故答案为:.
本题考查了菱形的性质,直角三角形角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.
12、①③④.
【解析】
由角平分线的定义和平行四边形的性质可证得CD=DF,进一步可证得F为AD的中点,由此可判断①;延长EF,交CD延长线于M,分别利用平行四边形的性质以及①的结论可得△AEF≌△DMF,结合直角三角形的性质可判断③;结合EF=FM,利用三角形的面积公式可判断②;在△DCF和△ECF中利用等腰三角形的性质、外角的性质及三角形内角和可得出∠DFE=3∠AEF,可判断④,综上可得答案.
【详解】
解:∵四边形ABCD为平行四边形,∴AD∥BC,
∴∠DFC=∠BCF,
∵CF平分∠BCD,∴∠BCF=∠DCF,
∴∠DFC=∠DCF,∴CD=DF,
∵AD=2AB, ∴AD=2CD,
∴AF=FD=CD,即F为AD的中点,故①正确;
延长EF,交CD延长线于M,如图,
∵四边形ABCD是平行四边形, ∴AB∥CD,
∴∠A=∠MDF,
∵F为AD中点,∴AF=FD,
又∵∠AFE=∠DFM,
∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,∴∠AEC=90°,
∴∠ECD=∠AEC=90°,
∵FM=EF,∴FC=FM,故③正确;
∵FM=EF,∴,
∵MC>BE,
∴<2,故②不正确;
设∠FEC=x,则∠FCE=x,
∴∠DCF=∠DFC=90°-x,
∴∠EFC=180°-2x,
∴∠EFD=90°-x+180°-2x=270°-3x ,
∵∠AEF=90°-x,
∴∠DFE=3∠AEF,故④正确;
综上可知正确的结论为①③④.
故答案为①③④.
本题以平行四边形为载体,综合考查了平行四边形的性质、全等三角形的判定和性质、直角三角形的斜边上的中线等于斜边一半的性质、三角形的内角和和等腰三角形的判定和性质,思维量大,综合性强. 解题的关键是正确作出辅助线,综合运用所学知识去分析思考;本题中见中点,延长证全等的思路是添辅助线的常用方法,值得借鉴与学习.
13、1
【解析】
把给出的此组数据中的数按一定的顺序排列,由于数据个数是7,7是奇数,所以处于最中间的数,就是此组数据的中位数;
【详解】
按从小到大的顺序排列为:24 36 45 1 58 75 80;
所以此组数据的中位数是1.
此题主要考查了中位数的意义与求解方法.
三、解答题(本大题共5个小题,共48分)
14、 (1);(2)1.
【解析】
(1)先根据二次根式的乘法法则和除法法则进行化简,然后再根据二次根式加减法法则进行计算即可,\
(2)根据平方差公式进行计算即可,
【详解】
解:,
,
,
,
,
.
本题主要考查二次根式的乘除,加减计算,解决本题的关键是要熟练掌握二次根式的乘除,加减法法则.
15、(1), ;(2)或.
【解析】
(1)利用待定系数法即可解决问题;
(2)观察图象写出反比例函数图象在一次函数的图象上方的x的取值范围即可.
【详解】
解:(1)把A(1,1)代入中,得到m=1,
∴反比例函数的解析式为y=,
把B(n,1)代入y=中,得到n=1;
(2)∵A(1,1),B(1,1),
观察图象可知:不等式成立时,x的取值范围是0<x≤1或x≥1.
本题考查一次函数与反比例函数的交点问题,解题的关键是灵活应用待定系数法确定函数解析式,学会利用图象法解决取值范围问题,属于中考常考题型.
16、(1)详见解析;(2)详见解析;(3)详见解析.
【解析】
(1)连接BF,证明Rt△BCF≌Rt△BEF,根据全等三角形的性质即可证得CF=EF;(2)连接BF,证明Rt△BCF≌Rt△BEF,根据全等三角形的性质可得CF=EF,由此即可证得结论;(3)连接BF,证明Rt△BCF≌Rt△BEF,根据全等三角形的性质可得CF=EF,由此即可证得结论.
【详解】
(1)证明:如图1,连接BF,
∵△ABC≌△DBE,
∴BC=BE,
∵∠ACB=∠DEB=90°,
在Rt△BCF和Rt△BEF中,
,
∴Rt△BCF≌Rt△BEF(HL),
∴CF=EF;
(2)如图2,连接BF,
∵△ABC≌△DBE,
∴BC=BE, AC=DE,
∵∠ACB=∠DEB=90°,
在Rt△BCF和Rt△BEF中,
,
∴Rt△BCF≌Rt△BEF(HL),
∴EF=CF,
∴AF+EF=AF+CF=AC=DE;
(3)如图3,连接BF,
∵△ABC≌△DBE,
∴BC=BE,AC=DE,
∵∠ACB=∠DEB=90°,
∴△BCF和△BEF是直角三角形,
在Rt△BCF和Rt△BEF中,
,
∴Rt△BCF≌Rt△BEF(HL),
∴CF=EF,
∵AC=DE,
∴AF=AC+FC=DE+EF.
本题考查了全等三角形的性质与判定,证明Rt△BCF≌Rt△BEF是解决问题的关键.
17、(1)详见解析;(2)详见解析;(3)
【解析】
(1)利用“ASA”判断△BCG≌△CFA,从而得到BG=CF;
(2)连结AG,利用等腰直角三角形的性质得CG垂直平分AB,则BG=AG,再证明∠D=∠GAD得到AG=DG,所以BG=DG,接着证明△ADE≌△CGE得到DE=GE,则BG=2DE,利用利用△BCG≌△CFA得到CF=BG,于是有CF=2DE;
(3)先得到BG=2,GE=1,则BE=3,设CE=x,则BC=AC=2CE=2x,在Rt△BCE中利用勾股定理得到x +(2x)=3,解得x= ,所以BC=,AB= BC=,然后在Rt△ABD中利用勾股定理计算AD的长.
【详解】
(1)证明:∵∠ACB=90°,AC=BC,
∴△ACB为等腰直角三角形,
∴∠CAF=∠ACG=45°,
∵CG平分∠ACB,
∴∠BCG=45°,
在△BCG和△CFA中
,
∴△BCG≌△CFA,
∴BG=CF;
(2)证明:连结AG,
∵CG为等腰直角三角形ACB的顶角的平分线,
∴CG垂直平分AB,
∴BG=AG,
∴∠GBA=∠GAB,
∵AD⊥AB,
∴∠D+∠DBA=90°,∠GAD+∠GAB=90°,
∴∠D=∠GAD,
∴AG=DG,
∴BG=DG,
∵CG⊥AB,DA⊥AB,
∴CG∥AD,
∴∠DAE=∠GCE,
∵E为AC边的中点,
∴AE=CE,
在△ADE和△CGE中
,
∴△ADE≌△CGE,
∴DE=GE,
∴DG=2DE,
∴BG=2DE,
∵△BCG≌△CFA,
∴CF=BG,
∴CF=2DE;
(3)∵DE=1,
∴BG=2,GE=1,即BE=3,
设CE=x,则BC=AC=2CE=2x,
在Rt△BCE中,x+(2x) =3,解得x=,
∴BC=,
∴AB= BC=,
在Rt△ABD中,∵BD=4,AB= ,
∴AD=.
此题考查全等三角形的判定与性质,等腰直角三角形,解题关键在于作辅助线
18、解: (1) 小鸟落在草坪上的概率为。
(2)用树状图列出所有可能的结果:
开始
1 2 3
2 3 1 3 1 2
所以编号为1、2的2个小方格空地种植草坪的概率是。
【解析】
试题分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.使用树状图分析时,一定要做到不重不漏.
试题解析:(1)P(小鸟落在草坪上)=
(2)用树状图或列表格列出所有问题的可能的结果:
由树状图(列表)可知,共有6种等可能结果,编号为1、2的2个小方格空地种植草坪有2种,
所以P(编号为1、2的2个小方格空地种植草坪)=
考点:1.列表法与树状图法;2.几何概率.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据无理方程的解法,首先,两边平方解出x的值,然后验根,解答即可.
【详解】
解:两边平方得:2x+1=x2
∴x2﹣2x﹣1=0,
解方程得:x1=1,x2=﹣1,
检验:当x1=1时,方程的左边=右边,所以x1=1为原方程的解,
当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.
故答案为1.
此题考查无理方程的解,解题关键在于掌握运算法则
20、2
【解析】
先根据矩形的性质,推理得到∠OBF=30°,,再根据含30°角的性质可得OF=BF ,利用勾股定理即可得到BF的长.
【详解】
解:∵四边形ABCD是矩形,
∴OA=OD,
∴∠OAD=∠ODA=30°,
∵EF⊥BD,
∴∠BOF=90°,
∵四边形ABCD是矩形,
∴AD∥BC,,
∴∠OBF=∠ODA =30°,
∴OF=BF.
又∵Rt△BOF中,
BF2-OF2=OB2,
∴BF2-BF2= ,
∴BF=2.
本题主要考查了矩形的性质以及勾股定理的运用,解决问题的关键是掌握:矩形的对角线相等且互相平分.
21、甲.
【解析】解:甲的平均成绩为:80×40%+90×60%=86(分),乙的平均成绩为:85×40%+86×60%=85.6(分),因为甲的平均分数最高.故答案为:甲.
22、1
【解析】
根据题意利用多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角的个数,外角的个数就是多边形的边数.
【详解】
解:360÷72=1.
故它的边数是1.
故答案为:1.
本题考查多边形内角与外角,根据正多边形的外角和求多边形的边数是解题的关键.
23、x<1
【解析】
分析:
根据图象和点A的坐标找到直线y=bx在直线y=ax+4的下方部分图象所对应的自变量的取值范围即可.
详解:
由图象可知,直线y=bx在直线y=ax+4下方部分所对应的图象在点A的左侧,
∵点A的坐标为(1,3),
∴不等式bx<ax+4的解集为:x
相关试卷
这是一份2025届湖南省祁阳县九年级数学第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖南省张家界慈利县联考2023-2024学年数学九上期末考试试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,解方程最适当的方法是等内容,欢迎下载使用。
这是一份湖南省张家界市慈利县2023-2024学年九年级数学第一学期期末统考试题含答案,共8页。试卷主要包含了下列事件是必然事件的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)