2025届湖南省芷江县岩桥中学数学九上开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在下列交通标志中,是中心对称图形的是( )
A.B.
C.D.
2、(4分)下列各式中,能与合并的二次根式是 ( )
A.B.C.D.
3、(4分)如图,将点P(-2,3)向右平移n个单位后落在直线y=2x-1上的点P'处,则n等于( )
A.4B.5C.6D.7
4、(4分)若一个等腰三角形的腰长为5,底边长为6,则底边上的高为( )
A.4B.3C.5D.6
5、(4分)若关于x的方程的解为负数,则m的取值范围是( )
A.B.C.D.
6、(4分)下列各式中是二次根式的为( )
A.B.C.D.
7、(4分)如图,在中,,,垂足为,点是边的中点,,,则( )
A.8B.7.5C.7D.6
8、(4分)正比例函数y=3x的大致图像是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某公司要招聘职员,竟聘者需通过计算机、语言表达和写作能力测试,李丽的三项成绩百分制依次是70分,90分,80分,其中计算机成绩占,语言表达成绩占,写作能力成绩占,则李丽最终的成绩是______分.
10、(4分)若﹣1的整数部分是a,小数部分是b,则代数式a2+2b的值是_____.
11、(4分)一次函数的图象如图所示,不等式的解集为__________.
12、(4分)某鞋店销售一款新式女鞋,试销期间对该款不同型号的女鞋销售量统计如下表:
该店经理如果想要了解哪种女鞋的销售量最大,那么他应关注的统计量是_____.
13、(4分)已知一组数据6、4、a、3、2的平均数是5,则a的值为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)作一直线,将下图分成面积相等的两部分(保留作图痕迹).
15、(8分)小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况、他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图;
(3)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?
16、(8分)一个多边形的内角和比它的外角和的2倍还大180度,求这个多边形的边数.
17、(10分)小李从甲地前往乙地,到达乙地休息了半个小时后,又按原路返回甲地,他与甲地的距离(千米)和所用的时间(小时)之间的函数关系如图所示。
(1)小李从乙地返回甲地用了多少小时?
(2)求小李出发小时后距离甲地多远?
18、(10分)如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(2,4),B(﹣4,m)两点.
(1)求k1,k2,b的值;
(2)求△AOB的面积;
(3)请直接写出不等式≥k2x+b的解.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)请写出的一个同类二次根式:________.
20、(4分)一次函数y=﹣x﹣3与x轴交点的坐标是_____.
21、(4分)如图,直线y=x﹣4与x轴交于点A,以OA为斜边在x轴上方作等腰Rt△OAB,并将Rt△AOB沿x轴向右平移,当点B落在直线y=x﹣4上时,Rt△OAB扫过的面积是__.
22、(4分)如图,在中,分别以点、为圆心,大于的长为半径作弧,两弧交于点、,作直线交于点,连接,若,,则与之间的函数关系式是___________.
23、(4分)已知、为有理数,、分别表示的整数部分和小数部分,且,则 .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b),与x轴交于A,B两点,
(1)求b,m的值;
(2)求△ABP的面积;
(3)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值.
25、(10分)(1)计算:(1+2)(﹣)﹣(﹣)2
(2)因式分解:2mx2﹣8mxy+8my2
26、(12分)如图,在边长为1个单位长度的小正方形组成的网格中,的顶点均在格点上,点A的坐标为,点B的坐标为,点C的坐标为.
(1)以点C为旋转中心,将旋转后得到,请画出;
(2)平移,使点A的对应点的坐标为,请画出;
(3)若将绕点P旋转可得到,则点P的坐标为___________.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
解:A图形不是中心对称图形;
B不是中心对称图形;
C是中心对称图形,也是轴对称图形;
D是轴对称图形;不是中心对称图形
故选C
2、B
【解析】
先化成最简二次根式,再判断即可.
【详解】
解:A、不能与合并,故本选项不符合题意;
B、=,能与合并,故本选项符合题意;
C、=,不能与合并,故本选项不符合题意;
D、=4,不能与合并,故本选项不符合题意.
本题考查了同类二次根式和二次根式的性质等知识点,能理解同类二次根式的定义是解此题的关键.
3、A
【解析】
由平移的性质得出P'的坐标,把P'点坐标代入直线y=2x-1上即可求出n的值;
【详解】
由题意得P'(-2+n,3),
则3=2(-2+n)-1,
解得n=4.
故答案为A.
本题主要考查了一次函数的图象,平移的性质,掌握一次函数的图象,平移的性质是解题的关键.
4、A
【解析】
根据等腰三角形底边高线和中线重合的性质,则BD=DC=3,可以根据勾股定理计算底边的高AD=.
【详解】
解:如图,在△ABC中,AB=AC=5,AD⊥BC,
则AD为BC边上的中线,即D为BC中点,
∴BD=DC=3,
在直角△ABD中AD==1.
故选:A.
本题考查了勾股定理在直角三角形中的正确运用,考查了等腰三角形底边高线、中线重合的性质,本题中根据勾股定理正确计算AD是解题的关键.
5、B
【解析】
先把m当作已知条件求出x的值,再根据x的值是负数列出关于m的不等式,求出m的取值范围即可.
【详解】
解:∵1x-m=1+x,
∴x=,
∵关于x的方程1x-m=1+x的解是负数,
∴<0,
解得m<-1.
故选:B.
本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.
6、A
【解析】
【分析】定义:一般地,形如(a≥0)的代数式叫做二次根式. 根据定义可以进行逐个判断.
【详解】A. 符合定义条件,故正确;B. ,没有强调a≥0故错;C. 根指数是3,不是二次根式;D. 中,-3<0,故错.
故正确选项是A.
【点睛】此题考核二次根式的定义.只要分析被开方数的符号,看根指数是否为2就容易判断.
7、B
【解析】
根据直角三角形的性质得到AE=BE=CE=AB=5,根据勾股定理得到CD==3,根据三角形的面积公式即可得到结论.
【详解】
解:∵在△ABC中,∠ACB=90°,C点E是边AB的中点,
∴AE=BE=CE=AB=5,
∵CD⊥AB,DE=4,
∴CD==3,
∴S△AEC=S△BEC=×BE•CD=×5×3=7.5,
故选:B.
本题考查了直角三角形斜边上的中线,能求出AE=CE是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半
8、B
【解析】
∵3>0,
∴图像经过一、三象限.
故选B.
点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时, y=kx的图象经过一、三象限;当k<0时, y=kx的图象经过二、四象限.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、78
【解析】
直接利用加权平均数的求法进而得出答案.
【详解】
由题意可得:70×50%+90×30%+80×20%=78(分).
故答案为:78
此题考查加权平均数,解题关键在于掌握运算法则
10、1+2
【解析】
先估算出的范围,再求出a,b的值,代入即可.
【详解】
解:∵16<23<25,
∴1<<5,
∴3<﹣1<1.
∴a=3,b=﹣1.
∴原式=32+2(﹣1)=9+2﹣8=1+2.
故答案为:1+2.
本题考查的是估算无理数的大小,熟练掌握无理数的性质是解题的关键.
11、
【解析】
首先根据直线与坐标轴的交点求解直线的解析式,在求解不等式即可.
【详解】
解:根据图象可得:
解得:
所以可得一次函数的直线方程为:
所以可得 ,解得:
故答案为
本题主要考查一次函数求解解析式,关键在于根据待定系数求解函数的解析式.
12、众数
【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然想要了解哪种女鞋的销售量最大,那么应该关注那种尺码销的最多,故值得关注的是众数.
【详解】
由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.
故答案为众数.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
13、1.
【解析】
根据平均数的定义列出方程,解方程可得.
【详解】
∵数据6、4、a、3、2的平均数是5,
∴,
解得:a=1,
故答案为:1.
本题主要考查算术平均数的计算,熟练掌握算术平均数的定义是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】解:将此图形分成两个矩形,分别作出两个矩形的对角线的交点,,
则,分别为两矩形的对称中心,过点,的直线就是所求的直线,如图所示.
E
F
15、(1)1200≤x<1400,1400≤x<1600;18人;5%;7.5%.(2)详见解析;(3)大约有338户.
【解析】
(1)、(2)比较简单,读图表以及频数分布直方图易得出答案.
(3)根据(1)、(2)的答案可以分析求解.求出各个分布段的数据即可.
【详解】
(1)根据题意可得出分布是:1200≤x<1400,1400≤x<1600;
1000≤x<1200中百分比占45%,所以40×0.45=18人;
1600≤x<1800中人数有2人,故占=0.05,故百分比为5%.
故剩下1400≤x<1600中人数有3,占7.5%.
(2)
(3)大于1000而不足1600的占75%,故450×0.75=337.5≈338户.
答:居民小区家庭属于中等收入的大约有338户.
本题的难度一般,主要考查的是频率直方图以及考生探究图表的能力.
16、这个多边形的边数是1.
【解析】
试题分析:设这个多边形的边数为n,根据多边形的内角和公式(n﹣2)•180°与外角和定理列出方程,求解即可.
试题解析:设这个多边形的边数为n,
根据题意,得(n﹣2)×180°=2×360°+180°,
解得n=1.
故这个多边形的边数是1.
17、(1)小时;(2)小李出发小时后距离甲地千米;
【解析】
(1)根据题意可以得到小李从乙地返回甲地用了多少小时;
(2)根据题意可以求得小李返回时对应的函数解析式,从而可以求得小李出发5小时后距离甲地的距离;
【详解】
解:(1)由题意可得, (小时),
答:小李从乙地返回甲地用了小时;
(2)设小李返回时直线解析式为,
将分别代入得, ,解得,,
,当时,,
答:小李出发小时后距离甲地千米;
此题考查一次函数的应用,解题关键在于列出方程
18、(1)k1=8,k1=1,b=1;(1)2;(3)x≤﹣4或0<x≤1.
【解析】
(1)由点A的坐标利用反比例函数图象上点的坐标特征,即可得出反比例函数解析式,再结合点B的横坐标即可得出点B的坐标,根据点A、B的坐标利用待定系数法,即可求出一次函数解析式;
(1)根据一次函数图象上点的坐标特征,即可求出一次函数图象与y轴的交点坐标,再利用分割图形法即可求出△AOB的面积;
(3)根据两函数图象的上下位置关系,即可得出不等式的解集.
【详解】
(1)∵反比例函数y=与一次函数y=k1x+b的图象交于点A(1,4),B(﹣4,m),
∴k1=1×4=8,m==﹣1,
∴点B的坐标为(﹣4,﹣1).
将A(1,4)、B(﹣4,﹣1)代入y1=k1x+b中,,
解得:,
∴k1=8,k1=1,b=1.
(1)当x=0时,y1=x+1=1,
∴直线AB与y轴的交点坐标为(0,1),
∴S△AOB=×1×4+×1×1=2.
(3)观察函数图象可知:
不等式≥k1x+b的解集为x≤﹣4或0<x≤1.
本题考查了反比例函数与一次函数的交点问题,解题的关键是:(1)根据待定系数法求出函数解析式;(1)利用分割图形法求出△AOB的面积;(3)根据两函数图象的上下位置关系找出不等式的解集.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
试题分析:因为,所以与是同类二次根式的有:,….(答案不唯一).
考点:1.同类二次根式;2.开放型.
20、(﹣3,0).
【解析】
根据函数与x轴交点的纵坐标为0,令y=0,得到函数与x轴交点的横坐标,即可得到交点坐标.
【详解】
解:当y=0时,-x-3=0,
解得,x=-3,
与x轴的交点坐标为(-3,0).
本题考查了一次函数图象上点的坐标特征,知道x轴上的所有点的纵坐标为0是解题的关键.
21、1.
【解析】
根据等腰直角三角形的性质求得点BC、OC的长度,即点B的纵坐标,表示出B′的坐标,代入函数解析式,即可求出平移的距离,进而根据平行四边形的面积公式即可求得.
【详解】
解:y=x-4,
当y=0时,x-4=0,
解得:x=4,
即OA=4,
过B作BC⊥OA于C,
∵△OAB是以OA为斜边的等腰直角三角形,
∴BC=OC=AC=2,
即B点的坐标是(2,2),
设平移的距离为a,
则B点的对称点B′的坐标为(a+2,2),
代入y=x-4得:2=(a+2)-4,
解得:a=4,
即△OAB平移的距离是4,
∴Rt△OAB扫过的面积为:4×2=1,
故答案为:1.
本题考查了一次函数图象上点的坐标特征、等腰直角三角形和平移的性质等知识点,能求出B′的坐标是解此题的关键.
22、
【解析】
由题意可判定PQ是AD的垂直平分线,根据线段垂直平分线的性质即得ED=EA,进一步可得∠A=∠ADE,再根据平行线的性质和平行四边形对角相等的性质即得结果.
【详解】
解:由题意可知,PQ是AD的垂直平分线,
∴ED=EA,
∴∠A=∠ADE,
∵四边形ABCD是平行四边形,
∴∠A=∠C=x°,AB∥CD,
∴∠A+∠ADC=180°,
即,
∴.
故答案为.
本题考查了对尺规作线段垂直平分线的理解和线段垂直平分线的性质以及平行四边形的性质,解题的关键是由作图语言正确判断PQ是AD的垂直平分线.
23、1.
【解析】
试题分析:∵2<<3,∴5>>1,∴m=1,n=,∵,∴,化简得:,等式两边相对照,因为结果不含,∴且,解得a=3,b=﹣2,∴2a+b=2×3﹣2=6﹣2=1.故答案为1.
考点:估算无理数的大小.
二、解答题(本大题共3个小题,共30分)
24、(1)m=-1;(2);(3)a=或a=.
【解析】
(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)根据解析式求得A、B的坐标,然后根据三角形面积公式即可求得;(3)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.
【详解】
(1)把点P(1,b)代入y=2x+1,
得b=2+1=3,
把点P(1,3)代入y=mx+4,得m+4=3,
∴m=-1;
(2)∵L1:y=2x+1 L2:y=-x+4,
∴A(-,0)B(4,0)
∴;
(3)解:直线x=a与直线l1的交点C为(a,2a+1)
与直线l2的交点D为(a,-a+4).
∵CD=2,
∴|2a+1-(-a+4)|=2,
即|3 a-3|=2,
∴3 a-3=2或3 a-3=-2,
∴a=或a=.
本题考查两条直线相交或平行问题、一次函数图象上点的坐标特征以及三角形的面积,解题的关键是:(1)利用一次函数图象上点的坐标特征求出b、m的值;(2)根据解析式求得与坐标轴的交点;(3)根据CD=2,找出关于a的含绝对值符号的一元一次方程.
25、(1)﹣+1;(1)1m(x﹣1y)1.
【解析】
(1)利用平方差公式,完全平方公式进行计算即可
(1)先提取公因式1m,再对余下的多项式利用完全平方公式继续分解.
【详解】
(1)原式=﹣+6﹣1 ﹣(1﹣1+3)
=﹣+6﹣1﹣5+1
=﹣+1;
(1)原式=1m(x﹣4xy+4y)
=1m(x﹣1y)1.
此题考查提公因式法与公式法的综合运用,二次根式的混合运算,解题关键在于掌握运算法则
26、(1)见解析;(2)见解析;(3)(-1,0).
【解析】
(1)利用网格特点和旋转的性质画出A、B、C的对应点A1、B1、C1即可;
(2)根据点A和A2的坐标特征确定平移的方向和距离,利用次平移规律写出点B2、C2的坐标,然后描点即可;、
(3)连接A1A2、C1C2、B1B2,它们都经过点(-1,0),从而得到旋转中心点P.
【详解】
解:(1)如图,△A1B1C1为所作;
(2)如图,△A2B2C2为所作.
(3)△A1B1C1绕点P旋转可得到△A2B2C2,则点P点坐标为(-1,0).
故答案为:(1)见解析;(2)见解析;(3)(-1,0).
本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
题号
一
二
三
四
五
总分
得分
批阅人
尺码/厘米
22
22.5
23
23.5
24
24.5
25
销售量/双
1
2
3
11
8
6
4
分组
频数
百分比
600≤x<800
2
5%
800≤x<1000
6
15%
1000≤x<1200
45%
9
22.5%
1600≤x<1800
2
合计
40
100%
2025届湖南省邵阳市武冈市第一中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2025届湖南省邵阳市武冈市第一中学数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届河南省郑州师院附属外语中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2025届河南省郑州师院附属外语中学数学九上开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年河南省柘城县张桥乡联合中学数学九上开学联考模拟试题【含答案】: 这是一份2024年河南省柘城县张桥乡联合中学数学九上开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。