2025届吉林省汪清县中学数学九上开学联考模拟试题【含答案】
展开这是一份2025届吉林省汪清县中学数学九上开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是( )
A.y1>y2
B.y1<y2
C.当x1<x2时,y1>y2
D.当x1<x2时,y1<y2
2、(4分)如图,在Rt△ABC中,∠ACB =90°,∠ABC=30°,将△ABC绕点C顺时针旋转角(0°<<180°)至△A′B′C,使得点A′恰好落在AB边上,则等于( ).
A.150°B.90°
C.60°D.30°
3、(4分)关于的一元二次方程有两个实数根,则的取值范围是( )
A.B.C.且D.且
4、(4分)一元二次方程的两根是( )
A.0,1B.0,2C.1,2D.1,
5、(4分)如图图形中,既是轴对称图形,又是中心对称图形的是( )
A.B.
C.D.
6、(4分)一组数据2,7,6,3,4, 7的众数和中位数分别是 ( )
A.7和4.5B.4和6C.7和4D.7和5
7、(4分)△ABC的三边为a、b、c,由下列条件不能判断它是直角三角形的是( )
A.∠A: ∠B: ∠C =3∶4∶5B.∠A=∠B+∠C
C.a2=(b+c)(b-c)D.a:b:c =1∶2∶
8、(4分)若不等式组的解集为,则图中表示正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知1<x<5,化简+|x-5|=____.
10、(4分)如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为__________ .
11、(4分)按一定规律排列的一列数:,,3,,,,…那么第9个数是____________.
12、(4分)把直线y=﹣2x+1沿y轴向上平移2个单位,所得直线的函数关系式为_________
13、(4分)在直角梯形中,,如果,,,那么对角线__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.
(1)求A,B两点的坐标;
(2)过B点作直线BP与x轴相交于P,且使OP=2OA, 求直线BP的解析式.
15、(8分)某市提倡“诵读中华经典,营造书香校园”的良好诵读氛围,促进校园文化建设,进而培养学生的良好诵读习惯,使经典之风浸漫校园.某中学为了了解学生每周在校经典诵读时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:
(1)表中的a= ,b= ;
(2)请将频数分布直方图补全;
(3)若该校共有1200名学生,试估计全校每周在校参加经典诵读时间至少有4小时的学生约为多少名?
16、(8分)如图,方格纸中每个小正方形的边长都是1个单位长度,建立平面直角坐标系xOy,ABC的三个顶点的坐标分别为A(2,4),B(1,1),C(4,2).
(1)平移ABC,使得点A的对应点为A1(2,﹣1),点B,C的对应点分别为B1,C1,画出平移后的A1B1C1;
(2)在(1)的基础上,画出A1B1C1绕原点O顺时针旋转90°得到的A2B2C2,其中点A1,B1,C1的对应点分别为A2,B2,C2,并直接写出点C2的坐标.
17、(10分)如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.
(1)求证:四边形AEBD是矩形;
(2)连接CE交AB于点F,若BE=2,AE=2,求EF的长.
18、(10分)A城有肥料200t,B城有肥料300t.现要把这些肥料全部运往C、D两乡,C乡需要肥料240t,D乡需要肥料260t,其运往C、D两乡的运费如下表:
设从A城运往C乡的肥料为xt,从A城运往两乡的总运费为y1元,从B城运往两乡的总运费为y2元.
(1)分别写出y1、y2与x之间的函数关系式(不要求写自变量的取值范围);
(2)试比较A、B两城总运费的大小;
(3)若B城的总运费不得超过3800元,怎样调运使两城总费用的和最少?并求出最小值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=________.
20、(4分)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为__.
21、(4分)直角三角形ABC中,∠C=90, AC=BC=2,那么AB=_______.
22、(4分)如果关于x的方程(m+2)x=8无解,那么m的取值范围是_____.
23、(4分)在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2OB2.则点B2的坐标_______
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,在中,。
(1)尺规作图:作线段的垂直平分线交于点,垂足为点,连接;(保留作图痕迹,不写作法);
(2)求证:是等腰三角形。
25、(10分)如图,在四边形中,,,对角线,交于点,平分,过点作,交的延长线于点,连接.
(1)求证:四边形是菱形;
(2)若,,求的长.
26、(12分)甲、乙两车间同时从A地出发前往B地,沿着相同的路线匀速驶向B地,甲车中途由于某种原因休息了1小时,然后按原速继续前往B地,两车离A地的距离y(km)与行驶的时间x(h)之间的函数关系如图所示:
(1)A、B两地的距离是__________km;
(2)求甲车休息后离A地的距离y(km)与x(h)之间的函数关系;
(3)请直接写出甲、乙两车何时相聚15km。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题分析:根据正比例函数图象的性质可知.
解:根据k<0,得y随x的增大而减小.
①当x1<x1时,y1>y1,
②当x1>x1时,y1<y1.
故选C.
考点:正比例函数的性质.
2、C
【解析】
由在Rt△ABC中,∠ACB=90°,∠ABC=30°,可求得∠A的度数,又由将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,易得△ACA′是等边三角形,继而求得答案.
【详解】
∵在Rt△ABC中,∠ACB=90°,∠ABC=30°,
∴∠A=90°−∠ABC=60°,
∵将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,
∴AC=A′C,
∴△ACA′是等边三角形,
∴α=∠ACA′=60°.
故选C.
本题考查了旋转的性质及等边三角形的性质,熟练掌握性质定理是解题的关键.
3、C
【解析】
利用一元二次方程的定义和判别式的意义得到k+1≠0且△=(-2)2-4(k+1)×(-1)≥0,然后求出两不等式的公共部分即可.
【详解】
解:根据题意得k+1≠0且△=(-2)2-4(k+1)×(-1)≥0,
解得:且.
故选:C.
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
4、A
【解析】
利用因式分解法解答即可得到方程的根.
【详解】
解:,
,
解得,.
故选:A.
本题主要考查了一元二次方程的解法,要根据不同的题目采取适当的方法解题.
5、D
【解析】
根据轴对称图形的定义和中心对称图形的定义逐一判断即可.
【详解】
解:A.是轴对称图形,不是中心对称图形.故本选项不符合题意;
B.不是轴对称图形,是中心对称图形.故本选项不符合题意;
C.是轴对称图形,不是中心对称图形.故本选项不符合题意;
D.是轴对称图形,也是中心对称图形.故本选项符合题意.
故选:D.
此题考查的是轴对称图形的识别和中心对称图形的识别,掌握轴对称图形的定义和中心对称图形的定义是解决此题的关键.
6、D
【解析】
试题解析:这组数据按照从小到大的顺序排列为:2,3,4,6,7,7,
则众数为:7,
中位数为:
故选D.
考点:1.众数;2.中位数.
7、A
【解析】
分析:根据直角三角形的概念,角的特点和勾股定理的逆定理逐一判断即可.
详解:根据直角三角形的两锐角互余,可知180°×=75°<90°,不是直角三角形,故正确;
根据三角形的内角和定理,根据∠A+∠B+∠C=180°,且∠A=∠B+∠C,可得∠A=90°,是直角三角形,故不正确;
根据平方差公式,化简原式为a2=b2-c2,即a2+c2=b2,根据勾股定理的逆定理,可知是直角三角形,故不正确;
根据a、b、c的关系,可直接设a=x,b=2x,c=x,可知a2+c2=b2,可以构成直角三角形,故不正确.
故选A.
点睛:此题主要考查了直角三角形的判定,关键是根据三角形的两锐角互余,三角形的内角和定理和勾股定理逆定理进行判断即可.
8、C
【解析】
根据数轴的性质“实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左”画出数轴表示即可.
【详解】
不等式组的解集为-1≤x<3在数轴表示-1以及-1和3之间的部分,如图所示:
,
故选C.
本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(≥或>向右画;≤或<向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时"≥"或"≤"要用实心圆点表示;>或<要用空心圆点表示.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4
【解析】
【分析】由已知判断x-1>0,x-5<0,再求绝对值.
【详解】因为1<x<5,
+|x-5|=|x-1|+|x-5|=x-1+5-x=4
故答案为:4
【点睛】本题考核知识点:二次根式化简. 解题关键点:求绝对值.
10、
【解析】
试题分析:根据题意得,等腰△ABC中,OA=OB=3,由等腰三角形的性质可得OC⊥AB,根据勾股定理可得OC=,又因OM=OC=,于是可确定点M对应的数为.
考点:勾股定理;实数与数轴.
11、.
【解析】
先把这一列数都写成的形式,再观察这列数,可得到被开方数的规律,进而得到答案.
【详解】
解:∵3= ,=,=
∴这一列数可变形为:,,,,,,…,
由此可知:这一列数的被开方数都是3的倍数,第n个数的被开方数是3n.
∴第9个数是:=
故答案为:.
此题考查了数字的变化规律,从被开方数考虑求解是解题的关键,难点在于二次根式的变形.
12、y=-2x+1
【解析】
试题分析:由题意得:平移后的解析式为:y=﹣2x+1+2=﹣2x+1.
故答案是y=﹣2x+1.
考点:一次函数图象与几何变换.
13、
【解析】
过点D作交BC于点E,首先证明四边形ABED是矩形,则,进而求出EC的长度,然后在含30°的直角三角形中求出DE的长度,最后利用勾股定理即可求出BD的长度.
【详解】
过点D作交BC于点E,
∵,
,
.
,
,
∴四边形ABED是矩形,
,
.
,
,
,
,
.
故答案为:.
本题主要考查矩形的判定及性质,含30°的直角三角形的性质和勾股定理,掌握矩形的判定及性质,含30°的直角三角形的性质和勾股定理是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)(-,0);(0,1);(2)y=x+1或y=-x+1.
【解析】
试题分析:(1)根据坐标轴上点的坐标特征确定A点和B点坐标;
(2)由OA=,OP=2OA得到OP=1,分类讨论:当点P在x轴正半轴上时,则P点坐标为(1,0);当点P在x轴负半轴上时,则P点坐标为(-1,0),然后根据待定系数法求两种情况下的直线解析式.
试题解析:(1)把x=0代入y=2x+1,得y═1,
则B点坐标为(0,1);
把y=0代入y=2x+1,得0=2x+1,
解得x=-,
则A点坐标为(-,0);
(2)∵OA=,
∴OP=2OA=1,
当点P在x轴正半轴上时,则P点坐标为(1,0),
设直线BP的解析式为:y=kx+b,
把P(1,0),B(0,1)代入得
解得:
∴直线BP的解析式为:y=-x+1;
当点P在x轴负半轴上时,则P点坐标为(-1,0),
设直线BP的解析式为y=kx+b,
把P(-1,0),B(0,1)代入得
解得:k=1,b=1
所以直线BP的解析式为:y=x+1;
综上所述,直线BP的解析式为y=x+1或y=-x+1.
考点:1.一次函数图象上点的坐标特征;2.待定系数法求一次函数解析式.
15、(1)6,0.2;(2)见解析;(3)学生约为780人.
【解析】
(1)根据频数=频率×总数,用40乘以0.15可求得a的值,用8除以40求得b的值即可;
(2)根据a的值补全直方图即可;
(3)用1200乘以参加经典诵读时间至少有4小时的学生所占的频率之和即可得.
【详解】
(1)a=40×0.15=6,b==0.2,
故答案为:6,0.2;
(2)如图所示:
(3)(0.15+0.2+0.3)×1200=780,
答:估计全校每周在校参加经典诵读时间至少有4小时的学生约为780名.
本题考查了频数分布直方图,频数与频率,用样本估计总体等,弄清题意,读懂统计图表,从中找到必要的信息是解题的关键.
16、(1)见解析;(2)见解析,C2(﹣3,﹣4)
【解析】
(1)根据可以得到平移方式,进而分别作出A,B,C的对应点A1,B1,C1即可.
(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.
【详解】
解:(1)如图,△A1B1C1即为所求.
(2)△A2B2C2即为所求. C2(﹣3,﹣4).
本题主要考查图形的平移及旋转,准确的找到平移或旋转后的对应点是解题的关键.
17、(1)见解析;(2)EF=.
【解析】
(1)根据有一个角是直角的平行四边形是矩形即可判断;
(2)利用勾股定理求出EC,证明△AEF∽△BCF,推出,由此即可解决问题.
【详解】
(1)证明:∵AE∥BD,AE=BD,
∴四边形AEBD是平行四边形,
∵AB=AC,D为BC的中点,
∴AD⊥BC,
∴∠ADB=90°,
∴四边形AEBD是矩形;
(2)解:∵四边形AEBD是矩形,
∴∠AEB=90°,
∵AE=2,BE=2,
∴BC=4,
∴EC=,
∵AE∥BC,
∴△AEF∽△BCF,
∴,
∴EF=EC=.
本题考查了矩形的判定和性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
18、(1)y1=−10x+6000,y2=5x+1(2)x=180时,y1=y2;x>180时,y1<y2;x<180时,y1>y2;(3)当从A城调往C乡肥料100t,调往D乡肥料100t,从B城调往C乡肥料140t,调往D乡肥料160t,两城总费用的和最少,最小值为2元.
【解析】
(1)根据题意即可得出y1、y2与x之间的函数关系式;
(2)根据(1)的结论列方程或列不等式解答即可;
(3)设两城总费用为y,根据(1)的结论得出y与x之间的函数关系式,根据题意得出x的取值范围,再根据一次函数的性质解答即可.
【详解】
(1)根据题意得:y1=20x+30(200−x)=−10x+6000,
y2=10(240−x)+15(300−240+x)=5x+1.
(2)若y1=y2,则−10x+6000=5x+1,解得x=180,
A、B两城总费用一样;
若y1<y2,则−10x+6000<5x+1,解得x>180,
A城总费用比B城总费用小;
若y1>y2,则−10x+6000>5x+1,解得0<x<180,
B城总费用比A城总费用小.
(3)依题意得:5x+1≤3800,
解得x≤100,
设两城总费用为W,则W=y1+y2=−5x+9300,
∵−5<0,
∴W随x的增大而减小,
∴当x=100时,W有最小值2.
200−100=100(t),240−100=140(t),100+60=160(t),
答:当从A城调往C乡肥料100t,调往D乡肥料100t,从B城调往C乡肥料140t,调往D乡肥料160t,两城总费用的和最少,最小值为2元.
本题考查了一次函数的应用.根据题意列出一次函数解析式是关键.注意到(2)需分类讨论.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
直接利用菱形的性质得出BO=3,CO=4,AC⊥BD,进而利用勾股定理以及直角三角形面积求法得出答案.
【详解】
∵四边形ABCD为菱形,
∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,
在Rt△OBC中,∵OB=3,OC=4,
∴BC=,
∵OE⊥BC,
∴OE•BC=OB•OC,
∴OE=.
20、1.
【解析】
试题分析:当B在x轴上时,对角线OB长的最小,如图所示:直线x=1与x轴交于点D,直线x=4与x轴交于点E,根据题意得:∠ADO=∠CEB=90°,OD=1,OE=4,∵四边形ABCD是平行四边形,∴OA∥BC,OA=BC,∴∠AOD=∠CBE,在△AOD和△CBE中,∵∠AOD=∠CBE,∠ADO=∠CEB,OA=BC,∴△AOD≌△CBE(AAS),∴OD=BE=1,∴OB=OE+BE=1;故答案为1.
考点:平行四边形的性质;坐标与图形性质.
21、
【解析】
根据勾股定理直接计算即可.
【详解】
直角三角形ABC中,∠C=90, AC=BC=2,则.
本题是对勾股定理的考查,熟练掌握勾股定理及二次根式运算是解决本题的关键.
22、
【解析】
根据一元一次方程无解,则m+1=0,即可解答.
【详解】
解:∵关于的方程无解,
∴m+1=0,
∴m=−1,
故答案为m=−1.
本题考查了一元一次方程的解,根据题意得出关于m的方程是解题关键.
23、()
【解析】
根据题意得出B点坐标变化规律,进而得出点B2018的坐标位置,进而得出答案.
【详解】
解:∵△AOB是等腰直角三角形,OA=1,
∴AB=OA=1,
∴B(1,1),
将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,
再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,
∴每4次循环一周,B1(2,-2),B2(-4,-4),B3(-8,8),B4(16,16),
∵2÷4=503…1,
∴点B2与B1同在一个象限内,
∵-4=-22,8=23,16=24,
∴点B2(22,-22).
故答案为:(22,-22).
此题主要考查了点的坐标变化规律,得出B点坐标变化规律是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)是等腰三角形,见解析.
【解析】
(1)根据垂直平分线的作法作出AB的垂直平分线交BC于点D,垂足为F,再连接AD即可求解;
(2)根据等腰三角形的性质和线段垂直平分线的性质得到∠1=∠C=∠B=36°,再根据三角形内角和定理和三角形外角的性质得到∠DAC=∠ADC,再根据等腰三角形的判定即可求解.
【详解】
解:(1)如图,作出的垂直平分线,
连接,
(2)∵,
∴,
∴,
∵是的垂直平分线,∴,
∴,
∴,
∴,
∴,
∴是等腰三角形.
本题考查了作图-复杂作图,涉及的知识点有:垂直平分线的作法,等腰三角形的性质,线段垂直平分线的性质得,三角形内角和定理,三角形外角的性质以及等腰三角形的判定等.
25、(1)见解析;(2).
【解析】
(1)由平行线的性质和角平分线得出∠ADB=∠ABD,证出AD=AB,由AB=BC得出AD=BC,即可得出结论;
(2)由菱形的性质得出AC⊥BD,OB=OD,OA=OC=AC=1,在Rt△OCD中,由勾股定理得:OD==2,得出BD=2OD=4,再由直角三角形斜边上的中线性质即可得出结果.
【详解】
(1)证明:,
,
平分,
,
,
,
,
,
,
四边形是平行四边形,
又,
四边形是菱形;
(2)四边形是菱形,
,,,
在中,由勾股定理得:,
,
,
,
,
.
本题考查了菱形的判定与性质、平行四边形的判定、等腰三角形的判定、平行线的性质、勾股定理、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质是解题的关键.
26、(1)180;(2);(3)甲乙两车出发0.5h或1.25h或1.75h或2.5h时两车距离15km
【解析】
(1)根据图象解答即可;(2) 根据函数图象中的数据可以求得甲车再次行驶过程中y与x之间的函数关系式;(3) 根据题意,利用分类讨论的数学思想可以求得x的值.
【详解】
解:
(1)观察图象可得:A、B两地的距离是180km;
(2)由题意得,甲车的平均速度为:180÷(3-1)=90
所以当x=1时,y=90
当x=2时,y=90
当2≤x≤3时,设(k≠0)
点(2,90),(3,180)在直线上
因此有
解得:
∴
∴甲车休息后离A地的距离为y(km)与x(h)之间的函数关系为:
(3) 设乙车行驶过程中y与x之间的函数关系式是y=ax,
180=3a,得a=60,
∴乙车行驶过程中y与x之间的函数关系式是y=60x,
∴60x=90,得x=1.5,即两车1.5小时相遇,
当0≤x≤1.5时,甲车行驶过程中y与x之间的函数关系式是y=90x,90=x,
∴90x-60x=15,得x=,
90-60x=15时,x=1.25,
当1.5≤x≤3时,甲车行驶过程中y与x之间的函数关系式是y=9x-90,
90=x,
∴60x-90=1.5,得x=1.75;
60x-(90x-90)=15,得x=2.5
由上可得,甲乙两车出发0.5h或1.25h或1.75h或2.5h时两车距离15km。
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.
题号
一
二
三
四
五
总分
得分
时间(小时)
频数(人数)
频率
2≤t<3
4
0.1
3≤t<4
10
0.25
4≤t<5
a
0.15
5≤t<6
8
b
6≤t<7
12
0.3
合计
40
1
C(元/t)
D(元/t)
A
20
30
B
10
15
相关试卷
这是一份2024年重庆市十八中学数学九上开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江西省上饶二中学数学九上开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省泰兴市西城中学数学九上开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。