2025届江苏南通启东市南苑中学数学九上开学联考试题【含答案】
展开
这是一份2025届江苏南通启东市南苑中学数学九上开学联考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )
A.2B.3C.5D.6
2、(4分)如图,在平面直角坐标系中,Rt△ABC的顶点B、C的坐标分别为(3,4)、(4,2),且AB平行于x轴,将Rt△ABC向左平移,得到Rt△A′B′C′.若点B′、C′同时落在函数y=(x>0)的图象上,则k的值为( )
A.2B.4C.6D.8
3、(4分)反比例函数的图象的一支在第二象限,则的取值范围是()
A.B.C.D.
4、(4分)已知点P(a,3+a)在第二象限,则a的取值范围是( )
A.a<0B.a>﹣3C.﹣3<a<0D.a<﹣3
5、(4分)下列几组数中,不能作为直角三角形三边长度的是( )
A.3,4,5B.5,7,8C.8,15,17D.1,
6、(4分)无理数+1在两个整数之间,下列结论正确的是( )
A.2-3之间B.3-4之间C.4-5之间D.5-6之间
7、(4分)一个直角三角形的两边长分别为2和,则第三边的长为( )
A.1B.2C.D.3
8、(4分)一蓄水池有水40m3,按一定的速度放水,水池里的水量y (m3)与放水时间t(分)有如下关系:
下列结论中正确的是
A.y随t的增加而增大B.放水时间为15分钟时,水池中水量为8m3
C.每分钟的放水量是2m3D.y与t之间的关系式为y=38-2t
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,某河堤的横断面是梯形ABCD,BC∥AD,已知背水坡CD的
坡度i=1:2.4,CD长为13米,则河堤的高BE为 米.
10、(4分)如图,点是矩形的对角线上一点,过点作,分别交、于、,连接、.若,.则图中阴影部分的面积为____________.
11、(4分)我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这7名同学成绩的______________(填”平均数”“众数”或“中位数”)
12、(4分)函数是y关于x的正比例函数,则______.
13、(4分)一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:直线始终经过某定点.
(1)求该定点的坐标;
(2)已知,,若直线与线段相交,求的取值范围;
(3)在范围内,任取3个自变量,,,它们对应的函数值分别为,,,若以,,为长度的3条线段能围成三角形,求的取值范围.
15、(8分) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调査了部分学生,调查结果分为五种:A非常了解,B比较了解,C基本了解,D不太了解,E完全不知.实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图请根据以上信息,解答下列问题:
(1)本次共调查了 名学生,扇形统计图中D所对应扇形的圆心角为 度;
(2)把这幅条形统计图补充完整(画图后请标注相应的数据);
(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有 名.
16、(8分)如图,每个小正方形的边长均为1,求证:△ABC是直角三角形.
17、(10分)解方程(本题满分8分)
(1)(x-5)2 =2(5-x)
(2)2x2-4x-6=0(用配方法);
18、(10分)如图,△ABC 中,点 O 是边 AC 上一个动点,过 O 作直线 MN∥BC,设 MN 交∠ACB 的平分线于点 E,交∠ACB 的外角平分线于点 F.
(1)求证:OE=OF;
(2)当点 O 在边 AC 上运动到什么位置时,四边形 AECF 是矩形?并说明理由.
(3)若 AC 边上存在点 O,使四边形 AECF 是正方形,猜想△ABC 的形状并证明你的结论.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为 .
20、(4分)如图,△ABC的中位线DE=5cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为_____cm1.
21、(4分)已知:等腰三角形ABC的面积为30,AB=AC= 10,则底边BC的长度为_________ m.
22、(4分)计算:=_______.
23、(4分)如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=2,则CE的长为_______
二、解答题(本大题共3个小题,共30分)
24、(8分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.
(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;
(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?
(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?
25、(10分)有一块薄铁皮ABCD,∠B=90°,各边的尺寸如图所示,若对角线AC剪开,得到的两块都是“直角三角形”形状吗?为什么?
26、(12分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,在现有网格中,以格点为顶点,分别按下列要求画三角形。
(1)在图1中,画一个等腰直角三角形,使它的面积为5;
(2)在图2中,画一个三角形,使它的三边长分别为3,2 , ;
(3)在图3中,画一个三角形,使它的三边长都是有理数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.
考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.
2、B
【解析】
设平移的距离为m,由点B、C的坐标可以表示出B′、C′的坐标,B′、C′都在反比例函数的图象上,可得方程,求出m的值,进而确定点B′、C′的坐标,代入可求出k的值.
【详解】
设Rt△ABC向左平移m个单位得到Rt△A′B′C′.
由B(3,4)、C(4,2),得:B′(3-m,4),C′(4-m,2)
点B′(3-m,4),C′(4-m,2)都在反比例函数的图象上,
∴(3-m)×4=(4-m)×2,
解得:m=2,
∴B′(1,4),C′(2,2)代入反比例函数的关系式得:k=4,
故选:B.
本题考查了反比例函数的图象上点的坐标特征以及平移的性质,表示出平移后对应点的坐标,建立方程是解决问题的关键.
3、A
【解析】
分析:当比例系数小于零时,反比例函数的图像经过二、四象限,由此得到k-1
相关试卷
这是一份2024年江苏省南通田家炳中学数学九上开学复习检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省南通市崇川区启秀中学数学九上开学统考试题【含答案】,共20页。试卷主要包含了选择题,四象限D.当x=时,y=1,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省南通市北城中学数学九上开学经典试题【含答案】,共24页。试卷主要包含了选择题,四象限B.第一,解答题等内容,欢迎下载使用。