![2025届江苏省邗江实验学校数学九上开学监测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16234887/0-1728520583632/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届江苏省邗江实验学校数学九上开学监测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16234887/0-1728520583694/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届江苏省邗江实验学校数学九上开学监测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16234887/0-1728520583714/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届江苏省邗江实验学校数学九上开学监测试题【含答案】
展开
这是一份2025届江苏省邗江实验学校数学九上开学监测试题【含答案】,共20页。试卷主要包含了选择题,三象限D.第二,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某校男子足球队年龄分布条形图如图所示,该球队年龄的众数和中位数分别是
A.B.
C.D.
2、(4分)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是( )
A.x<0B.x>0C.x<2D.x>2
3、(4分)坐标平面上,有一线性函数过(-3,4)和(-7,4)两点,则此函数的图象会过( )
A.第一、二象限B.第一、四象限
C.第二、三象限D.第二、四象限
4、(4分)如果一次函数y=kx+b(k、b是常数)的图象不经过第二象限,那么k、b应满足的条件是( )
A.k>0,且b≤0B.k<0,且b>0C.k>0,且b≥0D.k<0,且b<0
5、(4分)已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是( )
A.a>bB.a=bC.a<bD.以上都不对
6、(4分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.1.其中说法正确的是( )
A.①②③B.①②④C.①③④D.①②③④
7、(4分)下列各组数中,属于勾股数的是( )
A.1,,2B.1.5,2,2.5C.6,8,10D.5,6,7
8、(4分)下列方程中是一元二次方程的是( )
A.2x+1=0B.x2+y=1C.x2+2=0D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数的图象经过点,则不等式的解是__________.
10、(4分)▱ABCD中,∠A=50°,则∠D=_____.
11、(4分)在中,,,点分别是边的中点,则的周长是__________.
12、(4分)若分式方程无解,则__________.
13、(4分)某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为=65.84,乙跳远成绩的方差为=285.21,则成绩比较稳定的是_____.(填“甲”或“乙”)
三、解答题(本大题共5个小题,共48分)
14、(12分)甲乙两人参加某项体育训练,近期五次测试成绩得分情况如图所示:
(1)分别求出两人得分的平均数;
(2)谁的方差较大?
(3)根据图表和(1)的计算,请你对甲、乙两人的训练成绩作出评价.
15、(8分)求证:两组对边分别相等的四边形是平行四边形.(要求:画出图形,写出已知,求证和证明过程)
16、(8分)如图,已知在四边形中,于,于,,,求证:四边形是平行四边形.
17、(10分)如图(1) ,折叠平行四边形,使得分别落在边上的点,为折痕
(1)若,证明:平行四边形是菱形;
(2)若 ,求的大小;
(3)如图(2) ,以为邻边作平行四边形,若,求的大小
18、(10分)如图,平面直角坐标系中,反比例函数y1=的图象与函数y2=mx图象交于点A,过点A作AB⊥x轴于点B,已知点A坐标(2,1).
(1)求反比例函数解析式;
(2)当y2>y1时,求x的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若二次根式在实数范围内有意义,则x的取值范围是_____.
20、(4分)已知直线y=kx过点(1,3),则k的值为____.
21、(4分)铁路部门规定旅客免费携行李箱的长宽高之和不超过,某厂家生产符合该规定的行李箱,已知行李箱的高为,长与宽之比为,则该行李箱宽度的最大值是_______.
22、(4分)已知一个钝角的度数为 ,则x的取值范围是______
23、(4分)如图,在Rt△ABC中,BD平分∠ABC交AC于点D,过D作DE∥BC交AB于点E,若DE刚好平分∠ADB,且AE=a,则BC=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如下4个图中,不同的矩形ABCD,若把D点沿AE对折,使D点与BC上的F点重合;
(1)图①中,若DE︰EC=2︰1,求证:△ABF∽△AFE∽△FCE;并计算BF︰FC;
(2)图②中若DE︰EC=3︰1,计算BF︰FC= ;图③中若DE︰EC=4︰1,计算BF︰FC= ;
(3)图④中若DE︰EC=︰1,猜想BF︰FC= ;并证明你的结论
25、(10分)如图,平面直角坐标系中,直线AB:交y轴于点,交x轴于点B.
(1)求直线AB的表达式和点B的坐标;
(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.
①当 时,求点P的坐标;
②在①的条件下,以PB为斜边在第一象限作等腰直角,求点C的坐标.
26、(12分)如图,在平行四边形ABCD中,DE,BF分别是∠ADC,∠ABC的角平分线.
求证:四边形DEBF是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据条形图,观察可得15岁的人数最多,因此可得众数是15,将岁数从大到小排列,根据最中间的那个数就是中位数.
【详解】
首先根据条形图可得15岁的人数最多,
因此可得众数是15;
将岁数从大到小排列,根据条形图可知有人数:,
因此可得最中间的11和12个的平均值是中位数,11和12个人都是15岁,
故可得中位数是15.
本题主要考查众数和中位数的计算,是数据统计的基本知识,应当熟练掌握.
2、C
【解析】
由图象可知,直线与x轴相交于(1,0),当y>0时,x<1.
故答案为x<1.
3、A
【解析】
根据该线性函数过点(-3,4)和(-7,4)知,该直线是y=4,据此可以判定该函数所经过的象限.
【详解】
∵坐标平面上有一次函数过(-3,4)和(-7,4)两点,
∴该函数图象是直线y=4,
∴该函数图象经过第一、二象限.
故选:A.
本题考查了一次函数的性质.解题时需要了解线性函数的定义:在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k为一次项系数,b为常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量.一次函数在平面直角坐标系上的图象为一条直线.
4、A
【解析】
分析:由一次函数图象不经过第二象限可得出该函数图象经过第一、三象限或第一、三、四象限,再利用一次函数图象与系数的关系,即可找出结论.
详解:∵一次函数y=kx+b(k、b是常数)的图象不经过第二象限,
∴一次函数y=kx+b(k、b是常数)的图象经过第一、三象限或第一、三、四象限,
当一次函数y=kx+b(k、b是常数)的图象经过第一、三象限时,
k>0,b=0;
当一次函数y=kx+b(k、b是常数)的图象经过第一、三、四象限时,
k>0,b0,b⩽0.
故选A.
点睛:本题考查了一次函数图象与系数的关系,分一次函数图象过一、三象限和一、三、四象限两种情况进行分析.
5、A
【解析】
∵k=﹣2<0,
∴y随x的增大而减小,
∵1<2,
∴a>b.
故选A.
6、A
【解析】
根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B点所用时间可确定m的值,即可判断②,根据乙休息1h甲所行驶的路程可判断③,由乙返回时,甲乙相距80km,可求出两车相遇的时间即可判断④.
【详解】
由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;
由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;
当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;
乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.
所以正确的有①②③,
故选A.
本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.
7、C
【解析】
根据勾股数的定义:满足a2+b2=c2 的三个正整数,称为勾股数,据此判断即可.
【详解】
A.1,,2,因为不是正整数,故一定不是勾股数,故此选项错误;
B.1.5,2,2.5,因为不是正整数,故一定不是勾股数,故此选项错误;
C.因为62+82=102,故是勾股数.故此选项正确;
D.因为52+62≠72,故不是勾股数,故此选项错误.
故选C.
本题考查了勾股数的判定方法,比较简单,首先看各组数据是否都是正整数,再检验是否符合较小两边的平方和=最大边的平方.
8、C
【解析】
本题根据一元二次方程的定义求解.
一元二次方程必须满足两个条件:
(1)未知数的最高次数是2;
(2)二次项系数不为1.
由这两个条件得到相应的关系式,再求解即可.
【详解】
A、该方程是一元一次方程,故本选项错误.
B、该方程是二元二次方程,故本选项错误.
C、该方程是一元二次方程,故本选项正确.
D、该方程分式方程,故本选项错误.
故选C.
本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
将点P坐标代入一次函数解析式得出,如何代入不等式计算即可.
【详解】
∵一次函数的图象经过点,
∴,即:,
∴可化为:,
即:,
∴.
故答案为:.
本题主要考查了一次函数与不等式的综合运用,熟练掌握相关概念是解题关键.
10、130°
【解析】
根据平行四边形的邻角互补,则∠D=
11、
【解析】
首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.
【详解】
解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,
∴AB===5,
∵点D、E、F分别是边AB、AC、BC的中点,
∴DE=BC,DF=AC,EF=AB,
∴C△DEF=DE+DF+EF=BC +AC +AB = (BC+AC+AB)=(4+3+5)=6.
故答案为:6.
本题考查了勾股定理和三角形中位线定理.
12、1
【解析】
先把m看作已知,解分式方程得出x与m的关系,再根据分式方程无解可确定方程的增根,进一步即可求出m的值.
【详解】
解:在方程的两边同时乘以x-1,得 ,
解得.
因为原方程无解,所以原分式方程有增根x=1,即,解得m=1.
故答案为1.
本题考查了分式方程的解法和分式方程的增根,正确理解分式方程无解与其增根的关系是解题的关键.
13、甲.
【解析】
试题分析:∵=65.84,=285.21,∴<,∴甲的成绩比乙稳定.故答案为甲.
考点:方差.
三、解答题(本大题共5个小题,共48分)
14、(1)13,13;(2)4,0.8;甲的方差大;(3)从平均数来看甲乙训练成绩一样,从图中可以看中,乙比较稳定,甲波动大.
【解析】
(1)根据图形,分别写出甲、乙两个人这五次的成绩,甲:10,13,12,14,16;乙:13,14,12,12,14;再根据平均数进行计算即可;
(2)由(1)利用和方差的公式进行计算即可
(3)根据方差和平均数的结果进行分析即可.
【详解】
(1)两人得分的平均数:甲=(10+13+12+14+16)=13,
乙=(13+14+12+12+14)=13,
(2)方差:甲=(9+0+1+1+9)=4,
乙=(0+1+1+1+1)=0.8,
甲的方差大。
(3)从平均数来看甲乙训练成绩一样,从图中可以看中,乙比较稳定,甲波动大。
此题考查折线统计图,算术平均数,方差,解题关键在于掌握运算法则
15、见解析
【解析】
分析:题设作为已知条件,结论作为求证,画出图形,写出已知,求证,然后证明即可.
详解:
已知:如图,在四边形ABCD中,AB=CD,AD=BC.
求证:四边形ABCD是平行四边形.
证明:连结AC
在ΔABC和ΔCDA中.
∵AB=CD,BC=DA,AC=CA,
∴ ΔABC≌ΔCDA,
∴ ∠BAC=∠DCA,∠ACB=∠CAD,
∴ AB//CD,AD//BC,
∴四边形ABCD是平行四边形.
点睛:本题考查了平行四边形的判定、全等三角形的判定和性质等知识,解题的关键是熟练掌握命题的证明方法,学会写已知求证,属于中考常考题型.
16、见解析
【解析】
由SAS证得△ADE≌△CBF,得出AD=BC,∠ADE=∠CBF,证得AD∥BC,利用一组对边平行且相等的四边形是平行四边形判定四边形ABCD是平行四边形.
【详解】
证明:∵AE⊥BD于E,CF⊥BD于F,
∴∠AED=∠CFB=90°,
在△ADE和△CBF中,
∴△ADE≌△CBF(SAS),
∴AD=BC,∠ADE=∠CBF,
∴AD∥BC,
∴四边形ABCD是平行四边形.
17、(1)详见解析;(2)30°;(3)45°.
【解析】
(1)利用面积法解决问题即可.
(2)分别求出∠BAD,∠BAB′,∠DAD′即可解决问题.
(3)如图2中,延长AE到H,使得EH=EA,连接CH,HG,EF,AC.想办法证明E,H,G,C四点共圆,可得∠EGC=∠EHC=45°.
【详解】
(1)证明:如图1中,
∵四边形ABCD是平行四边形,AE⊥BC,AF⊥CD,
∴S平行四边形ABCD=BC•AE=CD•AF,
∵AE=AF,
∴BC=CD,
∴平行四边形是菱形;
(2)解:如图1中,
∵四边形ABCD是平行四边形,
∴∠C=∠BAD=110°,
∵AB∥CD,
∴∠C+∠B=180°,
∴∠B=∠D=70°,
∵AE⊥BC,AF⊥CD.
∴∠AEB=∠AFD=90°,
∴∠BAE=∠DAF=20°,
由翻折变换的性质可知:∠BAB′=2∠BAE=40°,∠DAD′=2∠DAF=40°,
∴∠B′AD′=110°﹣80°=30°.
(3)解:如图2中,延长AE到H,使得EH=EA,连接CH,HG,EF,AC.
∵EA=EC,∠AEC=90°,
∴∠ACE=45°,
∵∠AEC+∠AFC=180°,
∴A,B,C,F四点共圆,
∴∠AFE=∠ACE=45°,
∵四边形AEGF是平行四边形,
∴AF∥EG,AE=FG,
∴∠AFE=∠FEG=45°,
∴EH=AE=FG,EH∥FG,
∴四边形EHGF是平行四边形,
∴EF∥HG,
∴∠FEG=∠EGH=45°
∵EC=AE=EH,∠CEH=90°,
∴∠ECH=∠EHC=45°,
∴∠ECH=∠EGH,
∴E,H,G,C四点共圆,∠EGC=∠EHC=45°.
本题属于几何变换综合题,考查了平行四边形的性质和判定,菱形的判定,翻折变换,四点共圆,圆周角定理等知识,解题的关键是学会添加常用辅助线,利用四点共圆解决问题,属于中考压轴题.
18、(1)反比例函数的解析式为y=;(1)﹣1<x<0或x>1.
.
【解析】
(1)利用待定系数法即可解决问题;
(1)根据对称性确定点C坐标,观察图象,y1的图象在y1的图象上方的自变量的取值,即为所求.
【详解】
(1)∵反比例函数y1=经过点A(1,1),
∴k=1,
∴反比例函数的解析式为y=;
(1)根据对称性可知:A、C关于原点对称,可得C(﹣1,﹣1),
观察图象可知,当y1>y1时,x的取值范围为﹣1<x<0或x>1.
本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会利用对称性确定点C坐标.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x>2019
【解析】
根据二次根式的定义进行解答.
【详解】
在实数范围内有意义,即x-2019 0,所以x的取值范围是x 2019.
本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.
20、1
【解析】
将点(1,1)代入函数解析式即可解决问题.
【详解】
解:∵直线y=kx过点(1,1),
∴1=k,
故答案为:1.
本题主要考查了一次函数图象上点的坐标特征,解决问题的关键是将点的坐标代入解析式,利用方程解决问题.
21、
【解析】
设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.
【详解】
解:设长为3x,宽为2x,
由题意,得:5x+20≤160,
解得:x≤28,
故行李箱宽度的最大值是28×2=56cm.
故答案为:56cm.
本题考查了一元一次不等式的应用,解答本题的关键是仔细审题,找到不等关系,建立不等式.
22、
【解析】
试题分析:根据钝角的范围即可得到关于x的不等式组,解出即可求得结果.
由题意得,解得.
故答案为
考点:不等式组的应用
点评:本题属于基础应用题,只需学生熟练掌握钝角的范围和一元一次不等式组的解法,即可完成.
23、6a
【解析】
根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠ADE=∠C,∠EDB=∠CBD,求得∠C=30°,根据含30°角的直角三角形的性质即可得到结论.
【详解】
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∵DE∥BC,
∴∠ADE=∠C,∠EDB=∠CBD,
∵DE平分∠ADB,
∴∠ADE=∠EDB,
∴∠CBD=∠C,
∴∠ABC=2∠C,
∵∠A=90°,
∴∠ABC+∠C=90°,
∴∠C=30°,
∴∠ADE=30°,
∵AE=a,
∴DE=2a,
∵∠EDB=∠DBC,
∠DBE=∠EBD,
∴BE=DE=2a,
∴AB=3a,
∴BC=2AB=6a.
故答案为:6a.
本题考查角平分线的定义、平行线的性质、及含30°角的直角三角形的性质,熟练掌握30°角所对的直角边等于斜边一半的性质是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)根据折叠的性质及矩形的性质可证得△ABF∽△AFE∽△FCE,再根据相似三角形的性质求解即可,1:1;(2)1:2,1:3;(3)1︰(n-1)
【解析】
试题分析:根据折叠的性质及矩形的性质可证得△ABF∽△AFE∽△FCE,再根据相似三角形的性质求解即可.
解:(1)∵∠BAF+∠AFB=90°,∠CFE+∠AFB=90°
∴∠BAF=∠CFE
∵∠B=∠C=90°
∴△ABF∽△FCE
∴BF︰CE=AB︰FC=AF︰FE
∴AB︰AF=BF︰FE
∵∠B=∠AFE=90°
∴△ABF∽△AFE
∴△ABF∽△AFE∽△FCE
∵DE︰EC=2︰1
∴FE︰EC=2︰1
∴BF︰FC=1︰1
(2)若DE︰EC=3︰1,则BF︰FC=1︰2;若DE︰EC=4︰1,计算BF︰FC=1︰3;
(3)∵DE︰EC=︰1
∴FE︰EC=︰1
∴BF︰FC=1︰(n-1).
考点:相似三角形的综合题
点评:相似三角形的综合题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
25、(1)(1,0);(2)①(2,3);②(3,1)
【解析】
(1)把点A的坐标代入直线解析式可求得b=1,则直线的解析式为y=-x+1,令y=0可求得x=1,故此可求得点B的坐标;
(2)①由题l垂直平分OB可知OE=BE=2,将x=2代入直线AB的解析式可求得点D的坐标,设点P的坐标为(2,n),然后依据S△APB=S△APD+S△BPD可得到△APB的面积与n的函数关系式为S△APB=2n-1;由S△ABP=8得到关于n的方程可求得n的值,从而得到点P的坐标;
②如图1所示,过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C的坐标为(p,q),先证明△PCM≌△CBN,得到CM=BN,PM=CN,然后由CM=BN,PM=CN列出关于p、q的方程组可求得p、q的值;如图2所示,同理可求得点C的坐标.
【详解】
解:(1)∵把A(0,1)代入y=-x+b得b=1,
∴直线AB的函数表达式为:y=-x+1.
令y=0得:-x+1=0,解得:x=1,
∴点B的坐标为(1,0);
(2)①∵l垂直平分OB,
∴OE=BE=2.
∵将x=2代入y=-x+1得:y=-2+1=2.
∴点D的坐标为(2,2).
∵点P的坐标为(2,n),
∴PD=n-2.
∵S△APB=S△APD+S△BPD,
∴S△ABP=PD•OE+PD•BE=(n-2)×2+(n-2)×2=2n-1.
∵S△ABP=8,
∴2n-1=8,解得:n=3.∴点P的坐标为(2,3).
②如图1所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.
设点C(p,q).
∵△PBC为等腰直角三角形,PB为斜边,
∴PC=PB,∠PCM+∠MCB=90°,
∵CM⊥l,BN⊥CM,
∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.
∴∠MPC=∠NCB.
∵PC=BC,
,
∴△PCM≌△CBN.
∴CM=BN,PM=CN.
∴ ,解得.
∴点C的坐标为(3,1).
如图2所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.
设点C(p,q).
∵△PBC为等腰直角三角形,PB为斜边,
∴PC=CB,∠PCM+∠MCB=90°.
∵CM⊥l,BN⊥CM,
∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.
∴∠MPC=∠NCB.
在△PCM和△CBN中,
,
∴△PCM≌△CBN.
∴CM=BN,PM=CN.
∴ ,解得 .
∴点C的坐标为(0,2)舍去.
综上所述点C的坐标为(3,1).
此题考查一次函数的综合应用,全等三角形的性质和判断,解题关键在于掌握待定系数法求一次函数的解析式、割补法求面积、三角形的面积公式,全等三角形的性质和判断,由CM=BN,PM=CN列出关于p、q的方程组.
26、见解析.
【解析】
根据题意利用平行四边形的性质求出∠ABF=∠AED,即DE∥BF,即可解答
【详解】
∵四边形ABCD是平行四边形,
∴∠ADC=∠ABC.
又∵DE,BF分别是∠ADC,∠ABC的平分线,
∴∠ABF=∠CDE.
又∵∠CDE=∠AED,
∴∠ABF=∠AED,
∴DE∥BF,
∵DE∥BF,DF∥BE,
∴四边形DEBF是平行四边形.
此题考查平行四边形的性质和判定,利用好角平分线的性质是解题关键
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024年江苏省无锡市锡中学实验学校数学九上开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省邗江中学九上数学开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省高邮市九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)