终身会员
搜索
    上传资料 赚现金
    2025届江苏省南通市港闸区南通市北城中学九上数学开学质量跟踪监视模拟试题【含答案】
    立即下载
    加入资料篮
    2025届江苏省南通市港闸区南通市北城中学九上数学开学质量跟踪监视模拟试题【含答案】01
    2025届江苏省南通市港闸区南通市北城中学九上数学开学质量跟踪监视模拟试题【含答案】02
    2025届江苏省南通市港闸区南通市北城中学九上数学开学质量跟踪监视模拟试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届江苏省南通市港闸区南通市北城中学九上数学开学质量跟踪监视模拟试题【含答案】

    展开
    这是一份2025届江苏省南通市港闸区南通市北城中学九上数学开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以正方形的对角线OA1为边作正方形OA1A2B1,再以正方形的对角线OA2为边作正方形OA1A2B1,…,依此规律,则点A2017的坐标是( )
    A.(21008,0)B.(21008,﹣21008)C.(0,21010)D.(22019,﹣22019)
    2、(4分)在下列图形中,既是轴对称图形,又是中心对称图形的是 ( )
    A.B.C.D.
    3、(4分)如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( )
    A.16cmB.18cmC.20cmD.24cm
    4、(4分)已知,如图一次函数y1=ax+b与反比例函数y2= 的图象如图示,当y1<y2时,x的取值范围是( )
    A.x<2 B.x>5 C.2<x<5 D.0<x<2或x>5
    5、(4分)如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于( )
    A.60°B.65°C.75°D.80°
    6、(4分)实数、在数轴上对应的位置如图,化简等于( )
    A.B.
    C.D.
    7、(4分)二次函数y1=ax2+bx+c与一次函数y2=mx+n的图象如图所示,则满足ax2+bx+c>mx+n的x的取值范围是( )
    A.﹣3<x<0B.x<﹣3或x>0C.x<﹣3D.0<x<3
    8、(4分)下列各组数中,以它们为边长的线段不能构成直角三角形的是( )
    A.1,,B.3,4,5C.5,12,13D.2,2,3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,求关于x的不等式ax+b>kx的解是____________.
    10、(4分)若反比例函数y=的图象经过A(﹣2,1)、B(1,m)两点,则m=________.
    11、(4分)如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验结果.
    那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性 _________“凹面向上”的可能性.(填“大于”,“等于”或“小于”).
    12、(4分)如图,一次函数的图象交轴于点,交轴于点,点在线段上,过点分别作轴于点,轴于点.若矩形的面积为,则点的坐标为______.
    13、(4分)(2011山东烟台,17,4分)如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)先分解因式,再求值:,其中,.
    15、(8分)已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A.C不重合),过点P作PE⊥PB,PE交射线DC于点E,过点E作EF⊥AC,垂足为点F,当点E落在线段CD上时(如图),
    (1)求证:PB=PE;
    (2)在点P的运动过程中,PF的长度是否发生变化?若不变,试求出这个不变的值,若变化,试说明理由;
    16、(8分)已知长方形的长,宽.
    (1)求长方形的周长;
    (2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.
    17、(10分)如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC和CD于点P,Q.
    (1)求证:△ABP∽△DQR;
    (2)求的值.
    18、(10分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为9cm,则FG=_____cm.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,一次函数的图象交轴于点,交轴于点,点在线段上,过点分别作轴于点,轴于点.若矩形的面积为,则点的坐标为______.
    20、(4分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、1.已知这组数据的众数与平均数相等,那么这组数据的中位数是________.
    21、(4分)分解因式:______.
    22、(4分)甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较小的是_____.(填“甲”或“乙”)
    23、(4分)如图,平行四边形ABCD的顶点A是等边△EFG边FG的中点,∠B=60°,EF=4,则阴影部分的面积为________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)小黄人在与同伴们研究日历时发现了一个有趣的规律:
    若用字母n表示平行四边形中左上角位置的数字,请你用含n的式子写出小黄人发现的规律,并加以证明.
    25、(10分)在平面直角坐标系,直线y=2x+2交x轴于A,交y轴于 D,
    (1)直接写直线y=2x+2与坐标轴所围成的图形的面积
    (2)以AD为边作正方形ABCD,连接AD,P是线段BD上(不与B,D重合)的一点,在BD上截取PG=,过G作GF垂直BD,交BC于F,连接AP.
    问:AP与PF有怎样的数量关系和位置关系?并说明理由;
    (3)在(2)中的正方形中,若∠PAG=45°,试判断线段PD,PG,BG之间有何关系,并说明理由.
    26、(12分)将正方形ABCD放在如图所示的直角坐标系中,A点的坐标为(4,0),N点的坐标为(3,0),MN平行于y轴,E是BC的中点,现将纸片折叠,使点C落在MN上,折痕为直线EF.
    (1)求点G的坐标;
    (2)求直线EF的解析式;
    (3)设点P为直线EF上一点,是否存在这样的点P,使以P, F, G的三角形是等腰三角形?若存在,直接写出P点的坐标;若不存在,请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据正方形的性质可找出部分点An的坐标,根据坐标的变化即可找出A (2 ,2 )(n为自然数),再根据2017=252×8+1,即可找出点A2019的坐标.
    【详解】
    观察发现:
    A(0,1)、A(1,1),A(2,0),A(2,−2),A (0,−4),A (−4,−4),A (−8,0),A (−8,8),A (0,16),A (16,16)…,
    ∴A (2 ,2 )(n为自然数).
    ∵2017=252×8+1,
    ∴A2017的坐标是(21008,﹣21008).
    故选B.
    此题考查规律型:点的坐标,解题关键在于找到规律
    2、C
    【解析】
    试题分析:利用:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,可知
    A既不是轴对称图形,也不是中心对称图形,故不正确;
    B是轴对称图形,但不是中心对称图形,故不正确;
    C既是轴对称图形,也是中心对称图形,故正确;
    D不是轴对称图形,但是中心对称图形,故不正确.
    故选C
    考点:1、中心对称图形,2、轴对称图形
    3、C
    【解析】
    首先画出圆柱的侧面展开图,进而得到SC=12cm,FC=18-2=16cm,再利用勾股定理计算出SF长即可.
    【详解】
    将圆柱的侧面展开,蜘蛛到达目的地的最近距离为线段SF的长,
    由勾股定理,SF2=SC2+FC2=122+(18-1-1)2=400,
    SF=20 cm,
    故选C.
    本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.
    4、D
    【解析】
    根据图象得出两交点的横坐标,找出一次函数图象在反比例图象下方时x的范围即可.
    【详解】
    根据题意得:当y1<y2时,x的取值范围是0<x<2或x>1.
    故选D.
    本题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,灵活运用数形结合思想是解答本题的关键.
    5、C
    【解析】
    连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.
    【详解】
    连接BD,
    ∵四边形ABCD为菱形,∠A=60°,
    ∴△ABD为等边三角形,∠ADC=120°,∠C=60°,
    ∵P为AB的中点,
    ∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,
    ∴∠PDC=90°,
    ∴由折叠的性质得到∠CDE=∠PDE=45°,
    在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.
    故选:C.
    此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.
    6、B
    【解析】
    由数轴得出b-a<0、1-a>0,再根据二次根式的性质化简即可.
    【详解】
    解:由数轴知b-a<0、0∴1-a>0,
    则原式=|b-a| -1-a ||
    =a-b-(1-a)
    =a-b-1+a
    =2a-b-1,
    故选:B.
    本题主要考查二次根式的性质与化简,解题的额关键是掌握二次根式的性质及绝对值的性质.
    7、A
    【解析】
    根据函数图象写出二次函数图象在一次函数图象上方部分的x的取值范围即可.
    【详解】
    由图可知,﹣3<x<1时二次函数图象在一次函数图象上方,
    所以,满足ax2+bx+c>mx+n的x的取值范围是﹣3<x<1.
    故选:A.
    本题考查了二次函数与不等式,数形结合准确识图是解题的关键.
    8、D
    【解析】
    分析:欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
    详解:A、12+()2=3=()2,故是直角三角形,故错误;
    B、42+32=25=52,故是直角三角形,故错误;
    C、52+122=169=132,故是直角三角形,故错误;
    D、22+22=8≠32,故不是直角三角形,故正确.
    故选D.
    点睛:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、x<-1.
    【解析】
    试题解析:∵由函数图象可知,当x<-1时一次函数y=ax+b在一次函数y=kx图象的上方,
    ∴关于x的不等式ax+b>kx的解是x<-1.
    考点:一次函数与一元一次不等式.
    10、-2
    【解析】
    将点A代入反比例函数解出k值,再将B的坐标代入已知反比例函数解析式,即可求得m的值.
    【详解】
    解:∵反比例函数y=,它的图象经过A(-2,1),
    ∴1=,
    ∴k=-2
    ∴y=,
    将B点坐标代入反比例函数得,
    m=,
    ∴m=-2,
    故答案为-2.
    本题考查了反比例函数图象上点的坐标特征:反比例函数(k是常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    11、小于
    【解析】
    根据图形中的数据即可解答本题.
    【详解】
    解:根据表中数据可得,“凸面向上”的频率在0.443与0.440之间,
    ∴凸面向上”的可能性 小于“凹面向上”的可能性.,
    故答案为:小于.
    本题考查模拟实验,可能性的大小,解答本题的关键是明确概率的定义,利用数形结合的思想解答.
    12、(,1)或(,3)
    【解析】
    由点P在一次函数y=﹣2x+4的图象上,可设P(x,﹣2x+4),由矩形OCPD的面积是可求解.
    【详解】
    解:∵点P在一次函数y=﹣2x+4的图象上,
    ∴设P(x,﹣2x+4),
    ∴x(﹣2x+4)=,
    解得:x1=,x2=,
    ∴P(,1)或(,3).
    故答案是:(,1)或(,3)
    本题运用了一次函数的点的特征的知识点,关键是运用了数形结合的数学思想.
    13、2
    【解析】
    解:正方形为旋转对称图形,绕中心旋转每90°便与自身重合. 可判断每个阴影部分的面积为正方形面积的,这样可得答案填2.
    三、解答题(本大题共5个小题,共48分)
    14、,1
    【解析】
    先提取公因式,再利用完全平方公式进行因式分解,将,代入求解即可.
    【详解】
    解:


    ∵其中,
    ∴原式

    =1.
    本题考查了因式分解的问题,掌握完全平方公式是解题的关键.
    15、(1)见解析;(2)
    【解析】
    (1)过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.要证PB=PE,只需证到△PGB≌△PHE即可;(2)连接BD,如图2.易证△BOP≌△PFE,则有BO=PF,只需求出BO的长即可.
    【详解】
    (1)①证明:过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.
    ∵四边形ABCD是正方形,PG⊥BC,PH⊥DC,
    ∴∠GPC=∠ACB=∠ACD=∠HPC=45°.
    ∴PG=PH,∠GPH=∠PGB=∠PHE=90°.
    ∵PE⊥PB即∠BPE=90°,
    ∴∠BPG=90°−∠GPE=∠EPH.
    在△PGB和△PHE中,
    .
    ∴△PGB≌△PHE(ASA),
    ∴PB=PE.
    ②连接BD,如图2.
    ∵四边形ABCD是正方形,∴∠BOP=90°.
    ∵PE⊥PB即∠BPE=90°,
    ∴∠PBO=90∘−∠BPO=∠EPF.
    ∵EF⊥PC即∠PFE=90°,
    ∴∠BOP=∠PFE.
    在△BOP和△PFE中,

    ∴△BOP≌△PFE(AAS),
    ∴BO=PF.
    ∵四边形ABCD是正方形,
    ∴OB=OC,∠BOC=90∘,
    ∴BC= OB.
    ∵BC=1,∴OB= ,
    ∴PF=.
    ∴点PP在运动过程中,PF的长度不变,值为.
    此题考查正方形的性质,全等三角形的判定与性质,四边形综合题,解题关键在于作辅助线
    16、(1);(2)长方形的周长大.
    【解析】
    试题分析:(1)代入周长计算公式解决问题;
    (2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.
    试题解析:
    (1)
    ∴长方形的周长为 .
    (2)长方形的面积为:
    正方形的面积也为4.边长为
    周长为:

    ∴长方形的周长大于正方形的周长.
    17、(1)见解析;(2).
    【解析】
    (1)根据平行线的性质可证明两三角形相似;
    (2)根据平行四边形的性质及三角形中位线定理得:BP=PR,则CP=RE,证明△CPQ∽△DRQ,可得,由(1)中的相似列比例式可得结论.
    【详解】
    (1)∵四边形ABCD和四边形ACED都是平行四边形,
    ∴AB∥CD,AC∥DE,
    ∴∠BAC=∠ACD,∠ACD=∠CDE,
    ∴∠BAC=∠QDR,
    ∵AB∥CD,
    ∴∠ABP=∠DQR,
    ∴△ABP∽△DQR;
    (2)∵四边形ABCD和四边形ACED都是平行四边形,
    ∴AD=BC,AD=CE,
    ∴BC=CE,
    ∵CP∥RE,
    ∴BP=PR,
    ∴CP=RE,∵点R为DE的中点,
    ∴DR=RE,
    ∴,
    ∵CP∥DR,
    ∴△CPQ∽△DRQ,
    ∴,
    ∴,
    由(1)得:△ABP∽△DQR,
    ∴.
    此题考查了相似三角形的判定与性质以及平行四边形的性质.此题有难度,注意掌握数形结合思想的应用.
    18、
    【解析】
    作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′=4.5,首先证明△AKC′≌△GFM,可得GF=AK,由AN=6cm,A′N=3cm,C′K∥A′N,推出,可得,得出C′K=2cm,在Rt△AC′K中,根据AK=,求出AK即可解决问题.
    【详解】
    解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,
    ∵GF⊥AA′,
    ∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,
    ∴∠MGF=∠KAC′,
    ∴△AKC′≌△GFM,
    ∴GF=AK,
    ∵AN=cm,A′N=cm,C′K∥A′N,
    ∴,
    ∴,
    ∴C′K=1.5cm,
    在Rt△AC′K中,AK===cm,
    ∴FG=AK=cm,
    故答案为.
    本题考查翻折变换、正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(,1)或(,3)
    【解析】
    由点P在一次函数y=﹣2x+4的图象上,可设P(x,﹣2x+4),由矩形OCPD的面积是可求解.
    【详解】
    解:∵点P在一次函数y=﹣2x+4的图象上,
    ∴设P(x,﹣2x+4),
    ∴x(﹣2x+4)=,
    解得:x1=,x2=,
    ∴P(,1)或(,3).
    故答案是:(,1)或(,3)
    本题运用了一次函数的点的特征的知识点,关键是运用了数形结合的数学思想.
    20、2
    【解析】
    根据题意先确定x的值,再根据中位数的定义求解.
    【详解】
    解:当x=1或12时,有两个众数,而平均数只有一个,不合题意舍去.
    当众数为2,根据题意得:
    解得x=2,
    将这组数据从小到大的顺序排列1,2,2,2,12,
    处于中间位置的是2,
    所以这组数据的中位数是2.
    故答案为2.
    本题主要考查了平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.
    21、
    【解析】
    根据因式分解的定义:将多项式和的形式转化为整式乘积的形式;先提公因式,再套用完全平方公式即可求解.
    【详解】
    ,
    =,
    =,
    故答案为:.
    本题主要考查因式分解,解决本题的关键是要熟练掌握因式分解的定义和方法.
    22、乙.
    【解析】
    根据气温统计图可知:乙的平均气温比较稳定,波动小,由方差的意义知,波动小者方差小.
    【详解】
    观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;
    则乙地的日平均气温的方差小,
    故S2甲>S2乙.
    故答案是:乙.
    考查方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    23、3
    【解析】
    作AM⊥EF,AN⊥EG,连接AE,只要证明△AMH≌△ANL,即可得到S阴=S四边形AMEN,再根据三角形的面积公式即可求解.
    【详解】
    如图,作AM⊥EF,AN⊥EG,连接AE,
    ∵△ABC为等边三角形,AF=AG,
    ∴∠AEF=∠AEN,
    ∵AM⊥EF,AN⊥EG,
    ∴AM=AN,
    ∵∠MEN=60°,∠EMA=∠ENA=90°,
    ∴∠MAN=120°,
    ∵四边形ABCD为平行四边形,
    ∴BC∥AD,
    ∴∠DAB=180°-∠B=120°,
    ∴∠MAN=∠DAB
    ∴∠MAH=∠NAL,
    又AM⊥EF,AN⊥EG,AM=AN,
    ∴△AMH≌△ANL
    ∴S阴=S四边形AMEN,
    ∵EF=4,AF=2,∠AEF=30°
    ∴AE=2,AM=,EM=3
    ∴S四边形AMEN=2××3×=3,
    ∴S阴=S四边形AMEN=3
    故填:3.
    此题主要考查平行四边形与等边三角形的性质,解题的关键是熟知全等三角形的判定与含30°的直角三角形的性质.
    二、解答题(本大题共3个小题,共30分)
    24、,证明见解析
    【解析】
    设左上角的数字为x,则右上角的数字为x+1;左下角的数字为x+6;右下角的数字为x+7,根据题意将四个数交叉相乘进行整式乘法的运算并化简即可.
    【详解】
    解:规律为
    证明:∵
    =
    =6

    本题考查整式的乘法运算,根据题意找到数字间的等量关系及多项式的乘法法则,正确计算是本题的解题关键.
    25、(1)1;(1)AP=PF且AP⊥PF,理由见解析;(3)PD1+BG1=PG1,理由见解析
    【解析】
    (1)先根据一次函数解析式求出A,D的坐标,根据三角形的面积公式即可求解;
    (1)过点A作AH⊥DB,先计算出AD=,根据正方形的性质得到BD=,AH=DH=BD=,由PG=,得到DP+BG=,则PH=BG,可证得Rt△APH≌Rt△PFG,即可得到AP=PF且AP⊥PF;
    (3)把△AGB绕点A点逆时针旋转90°得到△AMD,可得∠MDA=∠ABG=45°,DM=BG, ∠MAD=∠BAG,AM=AG,则∠MDP=90°,根据勾股定理有DP1+BG1=PM1,由∠PAG=45°,可得∠DAP+∠BAG=45°,即∠MAP=45°,易证得△AMP≌△AGP,得到MP=PG,即可DP1+BG1=PM1.
    【详解】
    (1)∵直线y=1x+1交x轴于A,交y轴于 D,
    令x=0,解得y=1,∴D(0,1)
    令y=0,解得x=-1,∴A(-1,0)
    ∴AO=1,DO=1,
    ∴直线y=1x+1与坐标轴所围成的图形△AOD=×1×1=1;
    (1)AP=PF且AP⊥PF,理由如下:
    过点A作AH⊥DB,如图,
    ∵A(-1,0),D(0,1)
    ∴AD===AB,
    ∵四边形ABCD是正方形
    ∴BD==,
    ∴AH=DH=BD=,
    而PG=,
    ∴DP+BG=,
    而DH=DP+PH=
    ∴PH=BG,
    ∵∠GBF=45°
    ∴BG=GF=HP
    ∴Rt△APH≌Rt△PFG,
    ∴AP=PF, ∠PAH=∠PFG
    ∴∠APH+∠GPF=90°即AP⊥PF;
    (3)PD1+BG1=PG1,理由如下:
    如图,把△AGB绕点A点逆时针旋转90°得到△AMD,连接MP,
    ∴∠MDA=∠ABG=45°,DM=BG, ∠MAD=∠BAG,AM=AG,
    ∴∠MDP=90°,
    ∴DP1+BG1=PM1,
    又∵∠PAG=45°,
    ∴∠DAP+∠BAG=45°,
    ∴∠MAD+∠DAP =45°,即∠MAP=45°,
    而AM=AG,
    ∴△AMP≌△AGP,
    ∴MP=PG,
    ∴PD1+BG1=PG1
    此题主要考查一次函数与正方形的性质综合,解题的关键是熟知一次函数的图像与性质、正方形的性质、全等三角形的判定与性质.
    26、(1)G点的坐标为:(3,4-);(2)EF的解析式为:y=x+4-2;(3)P1(1,4-)、P2(,7-2),P3(-,2-1)、P4(3,4+)
    【解析】
    分析:(1)点G的横坐标与点N的横坐标相同,易得EM为BC的一半减去1,为1,EG=CE=2,利用勾股定理可得MG的长度,4减MG的长度即为点G的纵坐标;
    (2)由△EMG的各边长可得∠MEG的度数为60°,进而可求得∠CEF的度数,利用相应的三角函数可求得CF长,4减去CF长即为点F的纵坐标,设出直线解析式,把E,F坐标代入即可求得相应的解析式;
    (3)以点F为圆心,FG为半径画弧,交直线EF于两点;以点G为圆心,FG为半径画弧,交直线EF于一点;做FG的垂直平分线交直线EF于一点,根据线段的长度和与坐标轴的夹角可得相应坐标.
    详解:(1)易得EM=1,CE=2,
    ∵EG=CE=2,
    ∴MG=,
    ∴GN=4-;
    G点的坐标为:(3,4-);
    (2)易得∠MEG的度数为60°,
    ∵∠CEF=∠FEG,
    ∴∠CEF=60°,
    ∴CF=2,
    ∴OF=4-2,
    ∴点F(0,4-2).
    设EF的解析式为y=kx+4-2,
    易得点E的坐标为(2,4),
    把点E的坐标代入可得k=,
    ∴EF的解析式为:y=x+4-2.
    (3)P1(1,4-)、P2(,7-2),
    P3(-,2-1)、P4(3,4+)
    点睛:本题综合考查了折叠问题和相应的三角函数知识,难点是得到关键点的坐标;注意等腰三角形的两边相等有多种不同的情况.
    题号





    总分
    得分
    相关试卷

    2024年江苏省南通市港闸区数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024年江苏省南通市港闸区数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省南通市北城中学数学九上开学经典试题【含答案】: 这是一份2024-2025学年江苏省南通市北城中学数学九上开学经典试题【含答案】,共24页。试卷主要包含了选择题,四象限B.第一,解答题等内容,欢迎下载使用。

    江苏省南通市港闸区南通市北城中学2023-2024学年九上数学期末调研模拟试题含答案: 这是一份江苏省南通市港闸区南通市北城中学2023-2024学年九上数学期末调研模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,把二次函数化为的形式是,一元二次方程的根的情况是,方程的根是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map