年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2025届江苏省南通市南通中学九年级数学第一学期开学达标检测模拟试题【含答案】

    2025届江苏省南通市南通中学九年级数学第一学期开学达标检测模拟试题【含答案】第1页
    2025届江苏省南通市南通中学九年级数学第一学期开学达标检测模拟试题【含答案】第2页
    2025届江苏省南通市南通中学九年级数学第一学期开学达标检测模拟试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届江苏省南通市南通中学九年级数学第一学期开学达标检测模拟试题【含答案】

    展开

    这是一份2025届江苏省南通市南通中学九年级数学第一学期开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为( )
    A.(-3,0)B.(-6,0)C.(-,0)D.(-,0)
    2、(4分)一次统计八(2)班若干名学生每分跳绳次数的频数分布直方图的次数(结果精确到个位)是( )
    A.数据不全无法计算B.103
    C.104D.105
    3、(4分)把分式中的x、y的值同时扩大为原来的2倍,则分式的值( )
    A.不变B.扩大为原来的2倍
    C.扩大为原来的4倍D.缩小为原来的一半
    4、(4分)如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC于E,AB=,AC=2,BD=4,则AE的长为( )
    A.B.C.D.
    5、(4分)下列x的值中,是不等式x+1>5的解的是( )
    A.﹣2B.0C.4D.6
    6、(4分)某园林队原计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比原计划提前3小时完成任务,若每人每小时绿化的面积相同,求每人每小时绿化的面积。若设每人每小时绿化的面积为平方米,根据题意下面所列方程正确的是( )
    A.B.
    C.D.
    7、(4分)如果把分式中的x和y都扩大2倍,那么分式的值( )
    A.扩大为原来的4倍B.扩大为原来的2倍
    C.不变D.缩小为原来的倍
    8、(4分)如果成立,那么实数a的取值范围是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知一组数据﹣3、3,﹣2、1、3、0、4、x的平均数是1,则众数是_____.
    10、(4分)若一组数据6,,3,5,4的众数是3,则这组数据的中位数是__________.
    11、(4分)点P(m-1,2m+3)关于y轴对称的点在第一象限,则m的取值范围是_______.
    12、(4分)从A,B两题中任选一题作答:
    A.如图,在ΔABC中,分别以点A,B为圆心,大于AB的长为半径画弧,两弧交与点M,N,作直线MN交AB于点E,交BC于点F,连接AF。若AF=6,FC=4,连接点E和AC的中点G,则EG的长为__.
    B.如图,在ΔABC中,AB=2,∠BAC=60°,点D是边BC的中点,点E在边AC上运动,当DE平分ΔABC的周长时,DE的长为__.
    13、(4分)在4个不透明的袋子中分别装有10个球,其中,1号袋中有10个红球,2号袋中有8个红球.2个白球,3号袋中有5个红球.5个白球,4号袋中有2个红球,8个白球.从各个袋子中任意摸出1个球,摸到白球的可能性最大的是_____(填袋子号).
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知,在中,,于点,分别交、于点、点,连接,若.
    (1)若,求的面积.
    (2)求证:.
    15、(8分)已知函数,
    (1)当m取何值时抛物线开口向上?
    (2)当m为何值时函数图像与x轴有两个交点?
    (3)当m为何值时函数图像与x轴只有一个交点?
    16、(8分)在四边形ABCD中,E、F分别是边BC、CD的中点,连接AE,AF.
    (1)如图1,若四边形ABCD的面积为5,则四边形AECF的面积为____________;
    (2)如图2,延长AE至G,使EG=AE,延长AF至H,使FH=AF,连接BG、GH、HD、DB.
    求证:四边形BGHD是平行四边形;
    (3)如图3,对角线 AC、BD相交于点M, AE与BD交于点P, AF与BD交于点N. 直接写出BP、PM、MN、ND的数量关系.
    17、(10分)如图,在△ABC中,∠ACB=90°,∠CAB=30°, AC=4.5cm. M是边AC上的一个动点,连接MB,过点M作MB的垂线交AB于点N. 设AM=x cm,AN=y cm.(当点M与点A或点C重合时,y的值为0)
    探究函数y随自变量x的变化而变化的规律.
    (1) 通过取点、画图、测量,得到了x与y的几组对应值,如下表:
    (要求:补全表格,相关数值保留一位小数)
    (2)建立平面直角坐标系xOy,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
    (3)结合画出的函数图象,解决问题:当AN=AM时,AM的长度约为 cm(结果保留一位小数).
    18、(10分)甲、乙两组数据单位:如下表:
    (1)根据以上数据填写下表;
    (2)根据以上数据可以判断哪一组数据比较稳定.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,若x1,x2满足3x1=|x2|+2,则m的值为_____
    20、(4分)关于x的分式方程的解为非正数,则k的取值范围是____.
    21、(4分)直线是由直线向上平移______个单位长度得到的一条直线.直线是由直线向右平移______个单位长度得到的一条直线.
    22、(4分)某种药品原价75元盒,经过连续两次降价后售价为45元/盒.设平均每次降价的百分率为x,根据题意可列方程为_____.
    23、(4分)若关于若关于x的分式方程的解为正数,那么字母a的取值范围是___.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,点P是正方形ABCD的边BC上的任意一点,连接AP,作DE⊥AP,垂足是E,BF⊥AP,垂足是F.求证:DE=BF+EF.
    25、(10分)阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值
    解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t=±1因为2m2+n2≥0,所以2m2+n2=1.
    上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.
    根据以上阅读材料内容,解决下列问题,并写出解答过程.
    已知实数x,y满足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.
    26、(12分)学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:
    (1)当参加老师的人数为多少时,两家旅行社收费相同?
    (2)求出y1、y2关于x的函数关系式?
    (3)如果共有50人参加时,选择哪家旅行社合算?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.
    直线y=x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),
    因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).
    再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).
    设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),
    所以,解得:,
    即可得直线CD′的解析式为y=﹣x﹣1.
    令y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣,
    所以点P的坐标为(﹣,0).故答案选C.
    考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.
    2、C
    【解析】
    根据频数分布直方图可知本次随机抽查的学生人数为:2+4+6+3=15(人);然后取每一小组中间的数值近似地作为该组内每位学生的每分钟跳绳次数,再用加权平均数求解即可.
    【详解】
    解:根据频数分布直方图可知本次随机抽查的学生人数为:2+4+6+3=15(人);所以这若干名学生每分钟跳绳次数的平均数=(62×2+87×4+112×6+137×2)÷15≈103.67≈104,
    故选C.
    本题考查学生读取频数分布直方图的能力和利用统计图获取信息的能力.对此类问题,必须认真观察题目所给的统计图并认真的思考分析,才能作出正确的判断,从而解决问题.
    3、D
    【解析】
    根据分式的基本性质即可求出答案.
    【详解】
    解:原式=,
    ∴分式的值缩小为原来的一半;
    故选择:D.
    本题考查分式的基本性质,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
    4、D
    【解析】
    由勾股定理的逆定理可判定△BAC是直角三角形,继而根据求出平行四边形ABCD的面积即可求解.
    【详解】
    解:∵AC=2,BD=4,四边形ABCD是平行四边形,
    ∴AO=AC=1,BO=BD=2,
    ∵AB=,
    ∴AB2+AO2=BO2,
    ∴∠BAC=90°,
    ∵在Rt△BAC中,BC=,
    S△BAC=×AB×AC=×BC×AE,
    ∴×2=AE,
    ∴AE=,
    故选:D.
    本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC是直角三角形是解此题的关键.
    5、D
    【解析】
    根据不等式解集的定义即可得出结论.
    【详解】
    ∵不等式x+1>5的解集是所有大于4的数,
    ∴6是不等式的解.
    故选D.
    本题考查的是不等式的解集,熟知使不等式成立的未知数的值叫做不等式的解是解答此题的关键.
    6、A
    【解析】
    设每人每小时的绿化面积为x平方米,等量关系为:6名工人比8名工人完成任务多用3小时,据此列方程即可.
    【详解】
    解:设每人每小时的绿化面积为x平方米,
    由题意得,
    故选:A.
    本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.
    7、B
    【解析】
    依题意,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可;
    【详解】
    解:分别用2x和2y去代换原分式中的x和y得,

    可见新分式扩大为原来的2倍,
    故选B.
    本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.
    8、B
    【解析】




    故选B.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、3
    【解析】
    ∵-3、3, -2、1、3、0、4、x的平均数是1,
    ∴-3+3-2+1+3+0+4+x=8
    ∴x=2,
    ∴一组数据-3、3, -2、1、3、0、4、2,
    ∴众数是3.
    故答案是:3.
    10、4
    【解析】
    因为其余各数均出现一次且众数为3,所以,x=3;然后从小到大,排序即可确定中位数.
    【详解】
    解:其余各数均出现一次且众数为3,所以,x=3,原数据从小到大排序为:3,3,4,5,6,所以,中位数为4
    解答本题的关键是确定x的值,即灵活应用中位数概念.
    11、-1.5<m<1
    【解析】
    首先根据题意判断出P点在第二象限,再根据第二象限内点的坐标符号(-,+),可得到不等式组,然后求解不等式组即可得出m的取值范围.
    【详解】
    解:∵P(m-1,2m+3)关于y轴对称的点在第一象限,
    ∴P点在第二象限,
    解得:-1.5<m<1,
    故答案为:-1.5<m<1.
    本题考查关于y轴对称的点的坐标特点,各象限内点的坐标符号,解一元一次不等式组.解答本题的关键是判断出P点所在象限并据此列出不等式组.
    12、A.5 B.
    【解析】
    A.由作法知MN是线段AB的垂直平分线,所以BF=AF=6,然后根据EG是三角形ABC的中位线求解即可;
    B. 延长CA到点B′,使AB’等于AB,连接BB′,过点A作AF⊥BB′,垂足为F.由ED平分ΔABC的周长,可知EB′=EC,从而DE为ΔCBB′的中位线,由等腰三角形的性质求出∠B=∠B′=30°,从而BF=,进而可求出DE的长.
    【详解】
    A.由尺规作图可得直线MN为线段AB的垂直平分线,
    ∴BF=AF=6,E为AB中点,
    ∵点G为AC中点,
    ∴EG为ΔABC的中位线,
    ∴EG∥BC且EG =BC,
    ∵BF+FC=10,
    ∴EG=5;
    B.如图所示,延长CA到点B′,使AB’等于AB,连接BB′,过点A作AF⊥BB′,垂足为F.
    ∵ED平分ΔABC的周长,∴AB+AE+BD=EC+DC.
    ∵BD=DC, ∴AB+AE=EC.
    ∵AB=AB′, ∴EB′=EC,
    ∴DE为ΔCBB′的中位线.
    ∵∠BAC=60°,
    ∴ΔBAB′为顶角是120°的等腰三角形 ,
    ∴∠B=∠B′=30°,
    ∴AF=1,
    ∴BF=,
    ∴BB′=2,
    ∴ED=.
    故答案为:A. 5;B.
    本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,三角形中位线的性质,等腰三角形的性质、勾股定理,掌握三角形中位线定理、正确作出辅助线是解题的关键.
    13、1
    【解析】
    要求可能性的大小,只需求出各自所占的比例大小即可.
    【详解】
    解:1号袋子摸到白球的可能性=0;
    2号袋子摸到白球的可能性=;
    3号袋子摸到白球的可能性=;
    1号个袋子摸到白球的可能性=,
    所以摸到白球的可能性最大的是1.
    本题主要考查了可能性大小的计算,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.
    三、解答题(本大题共5个小题,共48分)
    14、(1)72;(2)见解析.
    【解析】
    (1)由得AB=CD,AD=BC,AB∥CD,则∠BAG=∠ACE,由得∠ACE+∠EAC=90°,则∠BAG+∠EAC=∠BAE =90°,由,可证得∠AFB=∠ACE,又因为BF=BC,可得BF=AC,可证△ABF≌△EAC,则AB=AE,的面积=AE∙CD=,在Rt△ABE中,由BE=12即可求得;
    (2)由(1)知:△ABF≌△EAC,得△EAD≌△EAC,设CE=x,则AB=CD=2x,BF=AD=x,根据面积法计算AG的长,作高线GH,利用三角函数分别得EH和GH的长,利用勾股定理计算EG的长,代入结论化简可得结论.
    【详解】
    (1)解:∵,
    ∴AB=CD,AD=BC,AB∥CD,
    ∴∠BAG=∠ACE,
    ∵,
    ∴∠ACE+∠EAC=90°,
    ∴∠BAG+∠EAC=∠BAE =90°,
    ∵,,
    ∴∠AFB=∠ACE,∠AEC =∠BAE =90°,
    ∵BF=BC,,
    ∴BF=AC,
    ∴△ABF≌△EAC,
    ∴AB=AE,
    ∴的面积=AE∙CD=,
    在Rt△ABE中, BE=12
    ∴2= =72,
    ∴的面积=72;
    (2)证明:由(1)知:△ABF≌△EAC,
    ∵BF=BC=AD,
    ∴△EAD≌△EAC,
    ∴AF=DE=CE,AE=AB=2CE,
    设CE=x,则AB=CD=2x,BF=AD=x,,
    S△ABF=BF•AG=AF•AB,
    x•AG=x•2x,
    ∴AG=x,
    ∴CG=x-x=x,
    过G作GH⊥CD于H,
    sin∠ECG== ,
    ∴GH=x,
    cs∠ECG== ,
    CH=x,
    ∴EH=x-x=,
    ∴EG== = ,
    ∴= = ,
    ∴GE=AG.
    故答案为(1)72;(2)见解析.
    本题考查平行四边形的性质、直角三角形的判定和性质,勾股定理、三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形,熟练掌握勾股定理与三角函数定义.
    15、(1);(2)且;(3)或
    【解析】
    (1)开口方向向上,即m-1>0,然后求解即可;
    (2)当与x轴有两个交点,即对应的一元二次方程的判别式大于零;
    (3)当与x轴有一个交点,即对应的一元二次方程的判别式等于零或者本身就是一次函数.
    【详解】
    解:(1)∵,
    ∴.
    (2)且,

    ∴且.
    (3)或,
    ∴或.
    本题考查了二次函数和一元二次方程的关系,特别是与x轴交点的个数与方程的判别式的关系是解答本题的关键.
    16、(1)(2)证明见解析(3).
    【解析】
    (1)连接AC,根据三角形中线把三角形分成两个面积相等的三角形进行解答即可得;
    (2)连接EF,根据三角形中位线定理可得到BD与GH平行且相等,由此即可得证;
    (3)如图,延长PE至点Q,使EQ=EP,连接CQ,延长NF至点O,使OF=NG,连接CO,通过证明△BPE≌△CQE可得BP=CQ,BP//CQ,同理:CO=ND,CO//ND,从而可得Q、C、O三点共线,继而通过证明△APM∽△AQC,可得PM:CQ=AM:AC,同理:MN:CO=AM:AC,即可得答案.
    【详解】
    (1)如图,连接AC,则有S△ABC+S△ACD= S四边形ABCD=5,
    ∵E、F分别为BC、CD中点,
    ∴S△AEC=S△ABC,S△AFC=S△ADC,
    ∴S四边形AECF=S△AEC+S△AFC=S△ABC+S△ADC= S四边形ABCD=,
    故答案为:;

    (2)如图,连接EF,
    ∵E、F分别是BC,CD的中点,
    ∴EF∥BD,EF=BD.,
    ∵EG=AE,FH=AF,
    ∴EF∥GH,EF=GH.,
    ∴BD∥GH,BD=GH.,
    ∴四边形BGHD是平行四边形;
    (3)如图,延长PE至点Q,使EQ=EP,连接CQ,
    延长NF至点O,使OF=NG,连接CO,
    在△BPE和△CQE中

    ∴△BPE≌△CQE(SAS),
    ∴BP=CQ,∠PBE=∠QCE,
    ∴BP//CQ,
    同理:CO=ND,CO//ND,
    ∴Q、C、O三点共线,
    ∴BD//OQ,
    ∴△APM∽△AQC,
    ∴PM:CQ=AM:AC,
    同理:MN:CO=AM:AC,
    ∴.
    本题考查了三角形中线的性质、三角形中位线定理、平行四边形的判定、全等三角形的判定与性质、相似三角形的判定与性质等,综合性较强,熟练掌握相关知识、正确添加辅助线是解题的关键.
    17、(1)1.1; (2)详见解析;(3)3.1.
    【解析】
    (1)如图,作辅助线:过N作NP⊥AC于P,证明△NPM∽△MCB,列比例式可得结论;
    (2)描点画图即可;
    (3)同理证明△NPM∽△MCB,列比例式,解方程可得结论.
    【详解】
    解:(1)如图,过N作NP⊥AC于P,
    Rt△ACB中,∠CAB=30°, AC=1.5cm.
    ∴BC=
    当x=2时,即AM=2,
    ∴MC=2.5,
    ∵∠NMB=90°,
    易得△NPM∽△MCB,
    ∴ = ,
    设NP=5a,PM=9a,则AP=15a,AN=10a,
    ∵AM=2,
    ∴15a+9a=2,
    a= ,
    ∴y=AN=10×1.73×≈1.1;
    故答案为1.1;
    (2)如图所示:
    (3)设PN=a,则AN=2a,AP=a,
    ∵AN=AM,∴AM=1a,
    如图,由(1)知:△NPM∽△MCB,
    ∴,即 ,
    解得:a≈0.81,
    ∴AM=1a=1×0.81=3.36≈3.1(cm).
    故答案为(1)1.1; (2)详见解析;(3)3.1.
    本题是三角形与函数图象的综合题,主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,函数图象的画法,直角三角形的性质,勾股定理,并与方程相结合,计算量比较大.
    18、(1)答案见解析;(2)甲组数据较稳定
    【解析】
    (1)根据图表按照平均数,众数,中位数的定义一一找出来填表即可.
    (2)此问先比较平均数,如果平均数相同再比较方差.
    【详解】
    (1)
    (2)∵甲、乙两组数据的平均数相同,且<,∴甲组数据较稳定.
    此题考查数据的收集和处理,包含内容有众数,中位数,平均数及方差.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    根据方程的系数结合根的判别式,即可得出△=20-2m≥0,解之即可得出m的取值范围.由根与系数的关系可得x1+x2=6①、x1•x2=m+2②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=-x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.
    【详解】
    ∵关于x的一元二次方程x2﹣6x+m+2=0有两个实数根x1,x2,
    ∴△=(﹣6)2﹣2(m+2)=20﹣2m≥0,
    解得:m≤1,
    ∴m的取值范围为m≤1.
    ∵关于x的一元二次方程x2﹣6x+m+2=0有两个实数根x1,x2,
    ∴x1+x2=6①,x1•x2=m+2②.
    ∵3x1=|x2|+2,
    当x2≥0时,有3x1=x2+2③,
    联立①③解得:x1=2,x2=2,
    ∴8=m+2,m=2;
    当x2<0时,有3x1=﹣x2+2④,
    联立①④解得:x1=﹣2,x2=8(不合题意,舍去).
    ∴符合条件的m的值为2.
    故答案是:2.
    本题考查了根与系数的关系以及一元二次方程的解,熟练掌握根与系数的关系公式:,是解题的关键.
    20、k≥1且k≠3.
    【解析】
    分式方程去分母转化为整式方程,由分式方程的解为非正数,确定出k的范围即可.
    【详解】
    去分母得:x+k+2x=x+1,
    解得:x=,
    由分式方程的解为非正数,得到⩽0,且≠−1,
    解得:k≥1且k≠3,
    故答案为k≥1且k≠3.
    本题考查的是分式方程,熟练掌握分式方程是解题的关键.
    21、2, 1.
    【解析】
    根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.
    【详解】
    解:直线是由直线向上平移 2个单位长度得到的一条直线.由直线向右平移 1个单位长度得到.
    故答案是:2;1.
    本题考查一次函数图象与几何变换,掌握平移中解析式的变化规律是:左加右减;上加下减是解题的关键.
    22、
    【解析】
    可先表示出第一次降价后的价格,那么第一次降价后的价格×(1-降低的百分率)=1,把相应数值代入即可求解.
    【详解】
    解:第一次降价后的价格为75×(1-x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为:
    75×(1-x)×(1-x),
    则列出的方程是75(1-x)2=1.
    故答案为75(1-x)2=1.
    此题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
    23、a>1且a≠2
    【解析】
    分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,
    根据题意得:a﹣1>0,解得:a>1.
    又当x=1时,分式方程无意义,∴把x=1代入x=a﹣1得a=2.
    ∴要使分式方程有意义,a≠2.
    ∴a的取值范围是a>1且a≠2.
    二、解答题(本大题共3个小题,共30分)
    24、见解析
    【解析】
    【分析】由正方形性质和垂直定义,根据AAS证明△ABF≌△DAE,得BF=AE.DE=AF,
    可得结论.
    【详解】解:∵ABCD是正方形,∴AD=AB,∠BAD=90°,
    ∵DE⊥AG,∴∠DEG=∠AED=90°∴∠ADE+∠DAE=90°
    又∵∠BAF+∠DAE=∠BAD=90°,∴∠ADE=BAF.
    ∵BF∥DE,∴∠AFB=∠DEG=∠AED.
    在△ABF与△DAE中,
    AD=AB,
    ∴△ABF≌△DAE(AAS).
    ∴BF=AE.DE=AF,
    ∵AF=AE+EF,
    ∴DE=BF+EF.
    【点睛】本题考核知识点:正方形性质.解题关键点:证三角形全等得对应线段相等.
    25、
    【解析】
    设t=x2+y2(t≥0),将原方程转化为(4t+3)(4t﹣3)=27,求出t的值,即可解答.
    【详解】
    解:设t=x2+y2(t≥0),则原方程转化为(4t+3)(4t﹣3)=27,
    整理,得
    16t2﹣1=27,
    所以t2= .
    ∵t≥0,
    ∴t= .
    ∴x2+y2的值是.
    此题考查换元法解一元二次方程,解题关键在于利用换元法解题.
    26、(1)当参加老师的人数为30时,两家旅行社收费相同;(2)y2=40x+600;(3)如果共有50人参加时,选择乙家旅行社合算,理由见解析
    【解析】
    (1)根据函数图象和图象中的数据可以得到当参加老师的人数为多少时,两家旅行社收费相同;
    (2)根据函数图象中的数据可以求得y1、y2关于x的函数关系式;
    (3)根据函数图象可以得到如果共有50人参加时,选择哪家旅行社合算.
    【详解】
    解:(1)由图象可得,
    当参加老师的人数为30时,两家旅行社收费相同;
    (2)设y1关于x的函数关系式是y1=ax,
    30a=1800,得a=60,
    即y1关于x的函数关系式是y1=60x;
    设y2关于x的函数关系式是y2=kx+b,
    ,得,
    即y2关于x的函数关系式是y2=40x+600;
    (3)由图象可得,
    当x>50时,乙旅行社比较合算,
    ∴如果共有50人参加时,选择乙家旅行社合算.
    本题考查一次函数的应用、方案选择问题,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
    题号





    总分
    得分
    批阅人
    x/cm
    0
    0.5
    1
    1.5
    2
    2.5
    3
    3.5
    4
    4.5
    y/cm
    0
    0.4
    0.8
    1.2
    1.6
    1.7
    1.6
    1.2
    0

    11
    9
    6
    9
    14
    7
    7
    7
    10
    10

    3
    4
    5
    8
    12
    8
    8
    13
    13
    16

    平均数
    众数
    中位数
    方差

    9

    9
    x/cm
    0
    0.5
    1
    1.5
    2
    2.5
    3
    3.5
    1
    1.5
    y/cm
    0
    0.1
    0.8
    1.2
    1.1
    1.6
    1.7
    1.6
    1.2
    0

    相关试卷

    2025届江苏省南通市港闸区南通市北城中学九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份2025届江苏省南通市港闸区南通市北城中学九上数学开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省南通市如皋市白蒲中学九年级数学第一学期开学统考模拟试题【含答案】:

    这是一份2024年江苏省南通市如皋市白蒲中学九年级数学第一学期开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省南通市第一九年级数学第一学期开学综合测试模拟试题【含答案】:

    这是一份2024年江苏省南通市第一九年级数学第一学期开学综合测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map