![2025届江苏省苏州市高新区实验九年级数学第一学期开学检测模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16234942/0-1728520872252/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届江苏省苏州市高新区实验九年级数学第一学期开学检测模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16234942/0-1728520872302/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届江苏省苏州市高新区实验九年级数学第一学期开学检测模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16234942/0-1728520872327/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届江苏省苏州市高新区实验九年级数学第一学期开学检测模拟试题【含答案】
展开
这是一份2025届江苏省苏州市高新区实验九年级数学第一学期开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间(单位:min)之间的关系如图所示.则每分的出水量是( )L.
A.5B.3.75C.4D.2.5
2、(4分)下列关于变量的关系,其中不是的函数的是( )
A.
B.
C.
D.
3、(4分)菱形的对角线,,则该菱形的面积为( )
A.12.5B.50C.D.25
4、(4分)若代数式 在实数范围内有意义,则的取值范围是( )
A.B.C.D.且
5、(4分)下列从左到右的变形中,是因式分解的是( )
A.m2-9=(x-3)B.m2-m+1=m(m-1)+1C.m2+2m=m(m+2)D.(m+1)2=m2+2m+1
6、(4分)如图,,,,则的度数为( )
A.B.C.D.
7、(4分)若分式 有意义,则 x 的取值范围是( )
A.x >3B.x <3C.x =3D.x ≠3
8、(4分)多项式与多项式的公因式是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在矩形ABCD中,AC为对角线,点E为BC上一点,连接AE,若∠CAD=2∠BAE,CD=CE=9,则AE的长为_____________.
10、(4分)某市对400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为_____.
11、(4分)若方程组的解是,则直线y=﹣2x+b与直线y=x﹣a的交点坐标是_____.
12、(4分)在正方形中,点在边上,点在线段上,且则_______度,四边形的面积_________.
13、(4分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)解关于x的方程:
15、(8分)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.
16、(8分)已知y是x的一次函数,如表列出了部分y与x的对应值,求m的值.
17、(10分) “扫黑除恶”受到广大人民的关注,某中学对部分学生就“扫黑除恶”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有_______人,扇形统计图中“很了解”部分所对应扇形的圆心角为_______;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对“扫黑除恶”知识达到“很了解”和“基本了解”程度的总人数.
18、(10分)已知:如图,在▱ABCD中,点E、F分别在BC、AD上,且BE=DF
求证:AC、EF互相平分.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,OAB是边长为4的等边三角形,OD是AB边上的高,点P是OD上的一个动点,若点C的坐标是,则PA+PC的最小值是_________________.
20、(4分)在中,,,将绕点A按顺时针方向旋转得到旋转角为,点B,点C的对应点分别为点D,点E,过点D作直线AB的垂线,垂足为F,过点E作直线AC的垂线,垂足为P,当时,点P与点C之间的距离是________.
21、(4分)分式方程的解是_____.
22、(4分)已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.
23、(4分)若ab,则32a__________32b(用“>”、“”或“<”填空).
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,是平行四边形的对角线,,分别交于点.
求证:.
25、(10分)如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.
(1)在这个变化中,自变量、因变量分别是 、 ;
(2)当点P运动的路程x=4时,△ABP的面积为y= ;
(3)求AB的长和梯形ABCD的面积.
26、(12分)某校在招聘数学教师时以考评成绩确定人选.甲、乙两位高校毕业生的各项考评成绩如下.如果按笔试成绩占30%、模拟上课占60%、答辩占10%来计算各人的考评成绩,那么谁将优先录取?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
观察函数图象找出数据,根据“每分钟进水量=总进水量÷放水时间”算出每分钟的进水量,再根据“每分钟的出水量=每分钟的进水量-每分钟增加的水量”即可算出结论.
【详解】
每分钟的进水量为:20÷4=5(升),
每分钟的出水量为:5-(30-20)÷(12-4)=3.75(升).
故选B.
本题考查了一次函数的应用,解题的关键是根据函数图象找出数据结合数量关系列式计算.
2、D
【解析】
根据函数的定义,设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而判断得出即可.
【详解】
解:选项ABC中,对于x的每一个确定的值,y都有唯一的值与其对应,故y是x的函数;
只有选项D中,x取1个值,y有2个值与其对应,故y不是x的函数.
故选D.
此题主要考查了函数的定义,正确掌握函数定义是解题关键.
3、D
【解析】
根据菱形的面积公式求解即可.
【详解】
菱形的面积=AC·BD=×5×10=25
故选:D
本题考查菱形的面积公式,菱形的面积等于对角线乘积的一半,学生们熟练掌握即可.
4、D
【解析】
分析:根据被开方数大于等于1,分母不等于1列式计算即可得解.
详解:由题意得,x+1≥1且x≠1,
解得x≥-1且x≠1.
故选D.
点睛:本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.
5、C
【解析】
把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫分解因式,根据以上内容逐个判断即可.
【详解】
把一个多项式化成几个整式的积的形式,叫把这个多项式因式分解,也叫分解因式,
A、等号前后的字母不一样,故本选项错误;
B、不是因式分解,故本选项错误;
C、左右相等,且是因式分解,故本选项正确;
D、不是因式分解,故本选项错误;
故选C.
本题考查了因式分解的定义的应用,能理解因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫分解因式.
6、A
【解析】
由,易求,再根据,易求,于是根据进行计算即可.
【详解】
,,
,
又,,
,
,
.
故选:.
本题主要考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.
7、D
【解析】
分式有意义,则分式的分母不为零,即x-3≠0,据此求解即可.
【详解】
若分式 有意义,则x-3≠0,x≠3
故选:D
本题考查的是分式有意义的条件,掌握分式有意义时分式的分母不为0是关键.
8、A
【解析】
试题分析:把多项式分别进行因式分解,多项式=m(x+1)(x-1),多项式=,因此可以求得它们的公因式为(x-1).
故选A
考点:因式分解
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
如图,作AM平分∠DAC,交CD于点M,过点M作MN⊥AC于点N,证明△ABE∽△ADM,根据相似三角形的性质可得AB:AD=BE:DM,证明△ADM≌△ANM,根据全等三角形的性质可得 AN=AD,MN=DM,设BE=m,DM=n,则AN=AD=BC= 9+m,MN=n,CM= 9-n,由此可得,即9n=m(9+m),根据勾股定理可得AC=,
从而可得 CN= -(9+m),在Rt△CMN中,根据勾股定理则可得(9-n)2=n2+[-(9+m)]2,继而由9n=m(9+m),可得- 2m(9+m)=2(9+m)2-2(9+m),化简得=9+2m,两边同时平方后整理得m2+6m-27=0,求得m=3或m=-9(舍去),再根据勾股定理即可求得答案.
【详解】
如图,作AM平分∠DAC,交CD于点M,过点M作MN⊥AC于点N,
则∠CAD=2∠DAM=2∠NAM,∠ANM=∠MNC=90°,
∵∠CAD=2∠BAE,
∴∠BAE=∠DAM,
∵四边形ABCD是矩形,
∴AB=CD=9,∠B=∠D=90°,AD=BC,
∴△ABE∽△ADM,
∴AB:AD=BE:DM,
又∵AM=AM,
∴△ADM≌△ANM,
∴AN=AD,MN=DM,
设BE=m,DM=n,则AN=AD=BC=CE+BE=9+m,MN=n,CM=CD-DM=9-n,
∵AB:AD=BE:DM,
∴,即9n=m(9+m),
∵∠B=90°,∴AC=,
∴CN=AC-AN=-(9+m),
在Rt△CMN中,CM2=CN2+MN2,
即(9-n)2=n2+[-(9+m)]2,
∴81-18n+n2=n2+92+(9+m)2-2(9+m)+(9+m)2,
又∵9n=m(9+m),
∴81- 2m(9+m)+n2=n2+92+(9+m)2-2(9+m)+(9+m)2,
即- 2m(9+m)=2(9+m)2-2(9+m),
∴=9+2m,
∴92+(9+m)2=(9+2m)2,
即m2+6m-27=0,
解得m=3或m=-9(舍去),
∴AE=,
故答案为:.
本题考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用等,综合性较强,难度较大,正确添加辅助线,熟练掌握和灵活运用相关知识,准确计算是解题的关键.
10、1
【解析】
分析:根据频率= 或频数=频率×数据总和解答.
详解:由题意,该组的人数为:400×0.25=1(人).
故答案为1.
点睛:本题考查了频数与频率之间的计算,熟知频数、频率及样本总数之间的关系是解决本题的关键.
11、(-1,3)
【解析】
直线y=-2x+b可以变成:2x+y=b,直线y=x-a可以变成:x-y=a,
∴两直线的交点即为方程组的解,
故交点坐标为(-1,3).
故答案为(-1,3).
12、,
【解析】
(1)将已知长度的三条线段通过旋转放到同一个三角形中,利用勾股定理即可求解;
(2)过点A作于点G,在直角三角形BGA中求出AB长,算出正方形ABCD的面积、三角形APB和三角形APD的面积,作差即得四边形的面积
【详解】
解:(1)将绕点A旋转后得到,连接
绕点A旋转后得到
根据勾股定理得
(2)过点A作于点G
由(1)知,即为等腰直角三角形,
根据勾股定理得
故答案为:(1). , (2).
本题考查了旋转的性质及勾股定理和逆定理,利用旋转作出辅助线是解题的关键.
13、2.1.
【解析】
连接CP,利用勾股定理列式求出AB,判断出四边形CFPE是矩形,根据矩形的对角线相等可得EF=CP,再根据垂线段最短可得CP⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.
【详解】
解:如图,连接CP.
∵∠ACB=90°,AC=3,BC=1,
∴AB=,
∵PE⊥AC,PF⊥BC,∠ACB=90°,
∴四边形CFPE是矩形,
∴EF=CP,
由垂线段最短可得CP⊥AB时,线段EF的值最小,
此时,S△ABC=BC•AC=AB•CP,
即×1×3=×5•CP,
解得CP=2.1.
∴EF的最小值为2.1.
故答案为2.1.
三、解答题(本大题共5个小题,共48分)
14、x=-5
【解析】
试题分析:方程左右两边同时乘以(x+1)(x-1),解出x以后要验证是否为方程的增根.
试题解析:
3(x+1)+2x(x-1)=2(x+1)(x-1)
3x+3+2x2-2x=2x2-2
x=-5.
经检验x=-5为原方程的解.
点睛:掌握分式方程的求解.
15、猜想:BE∥DF,BE=DF;证明见解析.
【解析】试题分析:利用平行四边形的性质和平行线的性质可以得到相等的线段和相等的角,从而可以证明△BCE≌△DAF,进而证得结论.
试题解析:猜想:BE∥DF且BE=DF.
证明:∵四边形ABCD是平行四边形,
∴CB=AD,CB∥AD,
∴∠BCE=∠DAF,
在△BCE和△DAF
,
∴△BCE≌△DAF,
∴BE=DF,∠BEC=∠DFA,
∴BE∥DF,
即BE∥DF且BE=DF.
考点:1.平行四边形的性质;2.全等三角形的判定与性质.
16、m=﹣1.
【解析】
利用待定系数法即可解决问题;
【详解】
解:设一次函数的解析式为y=kx+b,
则有,
解得,
∴一次函数的解析式为y=2x﹣3,
当x=﹣1时,m=﹣1.
本题考查一次函数图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.
17、(1)60,108°;(2)见解析;(3)该中学学生中对校园安全知识达到“很了解”和“基本了解”程度的总人数为72人.
【解析】
(1)由很了解的有18人,占30%,可求得接受问卷调查的学生数,继而求得扇形统计图中“很了解”部分所对应扇形的圆心角;(2)由(1)可求得基本了解很少的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.
【详解】
(1)接受问卷调查的学生共有:18÷30%=60(人);
∴扇形统计图中“很了解”部分所对应扇形的圆心角为:360°×30%=108°;
故答案为:60,108°;
(2)60﹣3﹣9﹣18=30;
补全条形统计图得:
(3)根据题意得:900×=720(人),
则估计该中学学生中对校园安全知识达到“很了解”和“基本了解”程度的总人数为72人.
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
18、证明见解析
【解析】
连接AE、CF,证明四边形AECF为平行四边形即可得到AC、EF互相平分.
【详解】
解:连接AE、CF,
∵四边形ABCD为平行四边形,
∴AD∥BC,AD﹦BC,
又∵DF﹦BE,
∴AF﹦CE,
又∵AF∥CE,
∴四边形AECF为平行四边形,
∴AC、EF互相平分.
本题考查平行四边形的判定与性质,正确添加辅助线是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
由题意知,点A与点B关于直线OD对称,连接BC,则BC的长即为PC+AP的最小值,过点B作BN⊥y轴,垂足为N,过B作BM⊥x轴于M,求出BN、CN的长,然后利用勾股定理进行求解即可.
【详解】
由题意知,点A与点B关于直线OD对称,连接BC,则BC的长即为PC+AP的最小值,
过点B作BN⊥y轴,垂足为N,过B作BM⊥x轴于M,则四边形OMBN是矩形,
∵△ABO是等边三角形,
∴OM=AO=×4=2,∴BN=OM=2,
在Rt△OBM中,BM===2,
∴ON=BM=2,
∵C,
∴CN=ON+OC=2+=3,
在Rt△BNC中,BC=,
即PC+AP的最小值为,
故答案为.
本题考查了轴对称的性质,最短路径问题,勾股定理,等边三角形的性质等,正确添加辅助线,确定出最小值是解题的关键.
20、3或1.
【解析】
由旋转的性质可知△ACB≌△AED,推出∠CAB=∠EAD=∠CBA,则当∠DAF=∠CBA时,分两种情况,一种是A,F,E三点在同一直线上,另一种是 D,A,C在同一条直线上,可分别求出CP的长度.
【详解】
解:∵AC=BC=10,
∴∠CAB=∠CBA,
由旋转的性质知,△ACB≌△AED,
∴AE=AC=10,∠CAB=∠EAD=∠CBA,
①∵∠DAF=∠CBA,
∴∠DAF=∠EAD,
∴A,F,E三点在同一直线上,如图1所示,
过点C作CH⊥AB于H,
则AH=BH=AB=7,
∵EP⊥AC,
∴∠EPA=∠CHA=90°,
又∵∠CAH=∠EAP,CA=EA,
∴△CAH≌△EAP(AAS),
∴AP=AH=7,
∴PC=AC-AP=10-7=3;
②当D,A,C在同一条直线上时,如图2,
∠DAF=∠CAB=∠CBA,
此时AP=AD=AB=7,
∴PC=AC+AP=10+7=1.
故答案为:3或1.
本题考查了旋转的性质,等腰三角形的性质,全等三角形的判定等,解题的关键是能够分类讨论,求出两种情况的结果.
21、
【解析】
两边都乘以x(x-1),化为整式方程求解,然后检验.
【详解】
原式通分得:
去分母得:
去括号解得,
经检验,为原分式方程的解
故答案为
本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.
22、x≥1.
【解析】
试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.
故答案为x≥1.
考点: 一次函数与一元一次不等式.
23、
【解析】
根据不等式的性质进行判断即可
【详解】
解:∵ab,
∴2a2b
∴32a32b
故答案为:<
本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
二、解答题(本大题共3个小题,共30分)
24、详见解析
【解析】
根据平行四边形的性质,证明全等即可证明结论.
【详解】
证明:四边形是平行四边形,
,.
.
.
.
.
.
本题主要考查平行四边形的性质定理,关键在于寻找全等的三角形.
25、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面积=1.
【解析】
(1)依据点P运动的路程为x,△ABP的面积为y,即可得到自变量和因变量;
(2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;
(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.
【详解】
(1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y.
故答案为x,y;
(2)由图可得:当点P运动的路程x=4时,△ABP的面积为y=2.
故答案为2;
(3)根据图象得:BC=4,此时△ABP为2,∴AB•BC=2,即×AB×4=2,解得:AB=8;
由图象得:DC=9﹣4=5,则S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=1.
本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.
26、甲优先录取.
【解析】
根据加权平均数的计算公式分别计算出甲、乙两人的成绩,再进行比较即得结果.
【详解】
解:甲的考评成绩是:88×30%+91×60%+88×10%=92.2,
乙的考评成绩是:91×30%+90×60%+90×10%=91.1.
答:甲优先录取.
本题考查了加权平均数的应用,属于基础题型,熟练掌握计算的方法是解题的关键.
题号
一
二
三
四
五
总分
得分
x
…
﹣1
1
2
…
y
…
m
﹣1
1
…
考评项目
成绩/分
甲
乙
理论知识(笔试)
88
95
模拟上课
95
90
答 辩
88
90
相关试卷
这是一份2025届江苏省苏州市胥江实验中学数学九年级第一学期开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省苏州市高新区数学九年级第一学期开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省苏州市高新区实验初级中学数学九年级第一学期开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题,六月份平均增长率为.等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)