终身会员
搜索
    上传资料 赚现金

    2025届江苏省苏州市梁丰初级中学九上数学开学综合测试模拟试题【含答案】

    立即下载
    加入资料篮
    2025届江苏省苏州市梁丰初级中学九上数学开学综合测试模拟试题【含答案】第1页
    2025届江苏省苏州市梁丰初级中学九上数学开学综合测试模拟试题【含答案】第2页
    2025届江苏省苏州市梁丰初级中学九上数学开学综合测试模拟试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届江苏省苏州市梁丰初级中学九上数学开学综合测试模拟试题【含答案】

    展开

    这是一份2025届江苏省苏州市梁丰初级中学九上数学开学综合测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,正方形ABCD的周长是16,P是对角线AC上的个动点,E是CD的中点,则PE+PD的最小值为( )
    A.2B.2C.2D.4
    2、(4分)如图,在四边形中,下列条件不能判定四边形是平行四边形的是( )
    A.B.
    C.D.
    3、(4分)已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是( )
    A.(2,1)B.(2,3)C.(2,2)D.(1,2)
    4、(4分)如图,四边形和四边形都是正方形,边在轴上,边在轴上,点在边上,反比例函数,在第二象限的图像经过点,则正方形与正方形的面积之差为( )

    A.6B.8C.10D.12
    5、(4分)顺次连结对角线相等的四边形各边中点所得的四边形必是( )
    A.菱形B.矩形C.正方形D.无法确定
    6、(4分)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以点A为圆心,AC长为半径画弧,交数轴于点M,则点M对应的数是( )
    A.B.C.+1D.+1
    7、(4分)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则矩形的面积为( )
    A.2B.4C.D.3
    8、(4分) “垃圾分类,从我做起”,以下四幅图案分别代表四类可回收垃圾,其中是中心对称图形的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)当 = ______ 时,分式的值为0.
    10、(4分)某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票张,乙种票张,由此可列出方程组为______.
    11、(4分)已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是 .
    12、(4分)平行四边形ABCD中,∠A=80°,则∠C= °.
    13、(4分)在菱形ABCD中,,,则对角线AC的长为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)甲、乙两班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如表,请根据表中数据解答下列问题
    (1)分别写出甲、乙两班选手进球数的平均数、中位数与众数;
    (2)如果要从这两个班中选出一个班级参加学校的投篮比赛,争取夺得总进球团体的第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?
    15、(8分)已知:如图,△OAB,点O为原点,点A、B的坐标分别是(2,1)、(﹣2,4).
    (1)若点A、B都在一次函数y=kx+b图象上,求k,b的值;
    (2)求△OAB的边AB上的中线的长.
    16、(8分)如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.
    (1)求证:四边形ADCE是平行四边形;
    (2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.
    17、(10分)如图,在等腰梯形ABCD中,,,,.点Р从点B出发沿折线段以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点O向上作射线OKIBC,交折线段于点E.点P、O同时开始运动,为点Р与点C重合时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒.
    (1)点P到达终点C时,求t的值,并指出此时BQ的长;
    (2)当点Р运动到AD上时,t为何值能使?
    (3)t为何值时,四点P、Q、C、E成为一个平行四边形的顶点?
    (4)能为直角三角形时t的取值范围________.(直接写出结果)
    (注:备用图不够用可以另外画)

    18、(10分)如图,直线的解析式为,且与轴交于点D,直线经过点、,直线、交于点C.
    (1)求直线的解析表达式;
    (2)求的面积;
    (3)在直线上存在异于点C的另一点P,使得与的面积相等,请求出点P的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=___.
    20、(4分)如图,在矩形中,,点分别在平行四边形各边上,且AE=CG,BF=DH, 四边形的周长的最小值为______.
    21、(4分)如图,在矩形中,,.若点是边的中点,连接,过点作交于点,则的长为______.
    22、(4分)如图,在平行四边形ABCD中,E为AD边上一点,且AE=AB,若∠BED=160°,则∠D的度数为__________.
    23、(4分)如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,则D点的坐标是 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知关于x的函数y=(m+3)x|m+2|是正比例函数,求m的值.
    25、(10分)如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.
    26、(12分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.
    (1)求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PE+PD=BE最小,而BE是直角△CBE的斜边,利用勾股定理即可得出结果.
    【详解】
    解:如图,连接BE,设BE与AC交于点P',
    ∵四边形ABCD是正方形,
    ∴点B与D关于AC对称,
    ∴P'D=P'B,
    ∴P'D+P'E=P'B+P'E=BE最小.
    即P在AC与BE的交点上时,PD+PE最小,即为BE的长度.
    ∴直角△CBE中,∠BCE=90°,BC=4,CE=CD=2,
    ∴.
    故选:A.
    本题题考查了轴对称中的最短路线问题,要灵活运用正方形的性质、对称性是解决此类问题的重要方法,找出P点位置是解题的关键
    2、C
    【解析】
    根据平行四边形的5种判定方法分别进行分析即可.
    【详解】
    A. 根据两组对边分别平行,是平行四边形可判定四边形ABCD是平行四边形,故此选项不合题意;
    B. 根据两组对边分别相等,是平行四边形可判定四边形ABCD是平行四边形,故此选项不合题意;
    C.不能判定判定四边形ABCD是平行四边形,故此选项符合题意;
    D. 根据一组对边平行且相等,是平行四边形可判定四边形ABCD是平行四边形,故此选项不合题意;
    故选C.
    此题考查平行四边形的判定,解题关键在于掌握判定定理
    3、D
    【解析】
    根据点A、A′的坐标确定出平移规律,然后根据规律求解点B′的坐标即可.
    【详解】
    ∵A(1,0)的对应点A′的坐标为(2,﹣1),
    ∴平移规律为横坐标加1,纵坐标减1,
    ∵点B(0,3)的对应点为B′,
    ∴B′的坐标为(1,2).
    故选D.
    本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.
    4、B
    【解析】
    设正方形AOBC的边长为a,正方形CDEF的边长为b,则E(a-b,a+b),根据E在反比例函数上得到(a+b)(a-b)=8,再求出S正方形AOBC=a2,S正方形CDEF=b2,即可求出面积之差.
    【详解】
    设正方形AOBC的边长为a,正方形CDEF的边长为b,
    则E(a-b,a+b),
    ∵E在反比例函数上
    ∴(a+b)(a-b)=8,即a2 -b2=8
    ∴S正方形AOBC-S正方形CDEF=a2-b2=8
    故选B.
    此题主要考查反比例函数的图像,解题的关键是根据题意找到E点坐标.
    5、A
    【解析】
    作出图形,根据三角形的中位线平行于第三边并且等于第三边的一半可得EF=AC,GH=AC,HE=BD,FG=BD,再根据四边形的对角线相等可知AC=BD,从而得到EF=FG=GH=HE,再根据四条边都相等的四边形是菱形即可得解.
    【详解】
    解:如图,E、F、G、H分别是四边形ABCD的边AB、BC、CD、DA的中点,
    连接AC、BD,
    根据三角形的中位线定理得,EF=AC,GH=AC,HE=BD,FG=BD,
    ∵四边形ABCD的对角线相等,
    ∴AC=BD,
    所以,EF=FG=GH=HE,
    所以,四边形EFGH是菱形.
    故选:A.
    本题考查菱形的判定和三角形的中位线定理,解题的关键是掌握菱形的判定和三角形的中位线定理.
    6、C
    【解析】
    根据题意求出BC,根据勾股定理求出AC,得到AM的长,根据数轴的性质解答.
    【详解】
    解:由题意得,BC=AB=1,
    由勾股定理得,AC=,
    则AM=,
    ∴点M对应的数是+1,
    故选:C.
    本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
    7、B
    【解析】
    由矩形的性质得出∠ABC=90°,OA=OB,再证明△AOB是等边三角形,得出OA=AB,求出AC,然后根据勾股定理即可求出BC,进而得出矩形面积即可.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴∠ABC=90°,OA=AC,OB=BD,AC=BD,
    ∴OA=OB,
    ∵∠AOD=120°,
    ∴∠AOB=60°,
    ∴△AOB是等边三角形,
    ∴OA=AB=2,
    ∴AC=2OA=4,
    ∴BC=,
    ∴矩形的面积=AB•BC=4;
    故选B.
    本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
    8、C
    【解析】
    根据中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称,逐一判定即可.
    【详解】
    A选项,是轴对称图形,不符合题意;
    B选项,是轴对称图形,不符合题意;
    C选项,是中心对称图形,符合题意;
    D选项,是轴对称图形,不符合题意;
    故选:C.
    此题主要考查对中心对称图形的理解,熟练掌握,即可解题.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、-2
    【解析】
    分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.
    【详解】
    分式的值为1,
    即|x|-2=1,x=±2,
    ∵x-2≠1,
    ∴x≠2,
    即x=-2,
    故当x=-2时,分式的值为1.
    故答案为:-2.
    此题考查了分式的值为1的条件.由于该类型的题易忽略分母不为1这个条件,所以常以这个知识点来命题.
    10、
    【解析】
    本题有两个相等关系:购买甲种票的人数+购买乙种票的人数=40;购买甲种票的钱数+购买乙种票的钱数=370,再根据上述的等量关系列出方程组即可.
    【详解】
    解:由购买甲种票的人数+购买乙种票的人数=40,可得方程;由购买甲种票的钱数+购买乙种票的钱数=370,可得,故答案为.
    本题考查了二元一次方程组的应用,认真审题、找准蕴含在题目中的等量关系是解决问题的关键,一般来说,设两个未知数,需要寻找两个等量关系.
    11、15.6
    【解析】
    试题分析:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,
    最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),
    则这六个整点时气温的中位数是15.6℃.
    考点:折线统计图;中位数
    12、1
    【解析】
    试题分析:利用平行四边形的对角相等,进而求出即可.
    解:∵四边形ABCD是平行四边形,
    ∴∠A=∠C=1°.
    故答案为:1.
    13、1
    【解析】
    由菱形的性质可得AB=BC=1,∠DAB+∠ABC=180°,可得∠ABC=10°,可证△ABC是等边三角形,可得AC=1.
    【详解】
    如图,
    ∵四边形ABCD是菱形
    ∴AB=BC=1,∠DAB+∠ABC=180°
    ∴∠ABC=10°,且AB=BC
    ∴△ABC是等边三角形
    ∴AC=AB=1
    故答案为:1
    本题考查了菱形的性质,等边三角形的判定和性质,熟练运用菱形的性质是本题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)甲班选手进球数的平均数为7,中位为7,众数为7;乙班选手进球数的平均数为7,中位为7,众数为7;(2)要争取夺取总进球团体第一名,应选乙班;要进入学校个人前3名,应选甲班.
    【解析】
    (1)利用平均数、中位数和众数的定义直接求出;(2)根据方差和个人发挥的最好成绩进行选择.
    【详解】
    解:(1)甲班选手进球数的平均数为7,中位为7,众数为7;
    乙班选手进球数的平均数为7,中位为7,众数为7;
    (2)甲班S12= [(10﹣7)2 +(9﹣7)2+(8﹣7)2+1×(7﹣7)2+0×(6﹣7)2+3×(5﹣7)2]=2.6,
    乙班S22= [0×(10﹣7)2+(9﹣7)2+2×(8﹣7)2+5×(7﹣7)2+(6﹣7)2+2×(5﹣7)2]=1.1.
    ∵甲方差>乙方差,
    ∴要争取夺取总进球团体第一名,应选乙班.
    ∵甲班有一位百发百中的出色选手,
    ∴要进入学校个人前3名,应选甲班.
    本题考查了平均数,中位数,方差的意义.平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
    15、 (1)k=﹣,b=;(2)AB边上的中线长为.
    【解析】
    (1)由A、B两点的坐标利用待定系数法可求得k、b的值;
    (2)由A、B两点到y轴的距离相等可知直线AB与y轴的交点即为线段AB的中点,利用(1)求得的解析式可求得中线的长.
    【详解】
    (1)∵点A、B都在一次函数y=kx+b图象上,
    ∴把(2,1)、(﹣2,4)代入可得 ,解得 ,
    ∴k=﹣,b=;
    (2)如图,设直线AB交y轴于点C,
    ∵A(2,1)、B(﹣2,4),
    ∴C点为线段AB的中点,
    由(1)可知直线AB的解析式为y=﹣x+,
    令x=0可得y=,
    ∴OC=,即AB边上的中线长为.
    此题考查一次函数图象上点的坐标特征,解题关键在于利用待定系数法求解
    16、见解析
    【解析】
    试题分析:
    (1)由已知条件易证△AFE≌△DFB,从而可得AE=BD=DC,结合AE∥BC即可证得四边形ADCE是平行四边形;
    (2)由(1)可知,AE=BD=CD;由BE平分∠AEC,结合AE∥BC可证得△BCE是等腰三角形,从而可得EC=BC,结合AD=EC、AF=DF,可得AF=DF=AE;由此即可得与AE相等的线段有BD、CD、AF、DF共四条.
    试题解析:
    (1)∵AE∥BC,
    ∴∠AEF=∠DBF,∠EAF=∠FDB,
    ∵点F是AD的中点,
    ∴AF=DF,
    ∴△AFE≌△DFB,
    ∴ AE=CD,
    ∵AD是△ABC的中线,
    ∴DC=AD,
    ∴AE=DC,
    又∵AE∥BC,
    ∴四边形 ADCE是平行四边形;
    (2)∵BE平分∠AEC,
    ∴∠AEB=∠CEB,
    ∵AE∥BC,
    ∴∠AEB=∠EBC,
    ∴∠CEB=∠EBC,
    ∴EC=BC,
    ∵由(1)可知,AD=EC,BD=DC=AE,
    ∴AD=BC,
    又∵AF=DF,
    ∴AF=DF=BD=DC=AE,
    即图中等于AE的线段有4条,分别是:AF、DF、BD、DC.
    17、 (2) 秒,;(2)详见解析;(3);(4)或.
    【解析】
    (2)把BA,AD,DC它们的和求出来再除以速度每秒5个单位就可以求出t的值,然后也可以求出BQ的长;
    (2)如图2,若PQ∥DC,又AD∥BC,则四边形PQCD为平行四边形,从而PD=QC,用t分别表示QC,BA,AP,然后就可以得出关于t的方程,解方程就可以求出t;
    (3)分情况讨论,当P在BA上运动时,E在CD上运动.0≤t≤20,QC的长度≤30,PE的长度>AD=75,QC

    相关试卷

    2024年江苏省苏州市张家港市梁丰高级中学数学九年级第一学期开学综合测试模拟试题【含答案】:

    这是一份2024年江苏省苏州市张家港市梁丰高级中学数学九年级第一学期开学综合测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省张家港市梁丰初级中学数学九年级第一学期开学复习检测模拟试题【含答案】:

    这是一份2024-2025学年江苏省张家港市梁丰初级中学数学九年级第一学期开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年江苏省苏州市张家港市梁丰初级中学九上数学期末联考试题含答案:

    这是一份2023-2024学年江苏省苏州市张家港市梁丰初级中学九上数学期末联考试题含答案,共7页。试卷主要包含了抛物线与坐标轴的交点个数为,已知是方程的一个解,则的值是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map