![2025届江苏省泰兴市老叶初级中学九年级数学第一学期开学学业水平测试模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16234956/0-1728521121998/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届江苏省泰兴市老叶初级中学九年级数学第一学期开学学业水平测试模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16234956/0-1728521122056/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届江苏省泰兴市老叶初级中学九年级数学第一学期开学学业水平测试模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16234956/0-1728521122073/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届江苏省泰兴市老叶初级中学九年级数学第一学期开学学业水平测试模拟试题【含答案】
展开
这是一份2025届江苏省泰兴市老叶初级中学九年级数学第一学期开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一元二次方程配方后可化为( )
A.B.C.D.
2、(4分)把函数与的图象画在同一个直角坐标系中,正确的是( )
A.B.
C.D.
3、(4分)菱形具有而平行四边形不具有的性质是( )
A.对角线互相垂直B.对边平行
C.对边相等D.对角线互相平分
4、(4分)下列选项中,能使分式值为的的值是( )
A.B.C.或D.
5、(4分)能使分式的值为零的所有x的值是( )
A.x=1B.x=﹣1C.x=1或x=﹣1D.x=2或x=1
6、(4分)如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为( )
A.9B.12C.9D.18
7、(4分)下列计算正确的是( )
A.=±2B.+=C.÷=2D.=4
8、(4分)如图,在菱形中,,的垂直平分线交对角线于点,为垂足,连结,则等于( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,正方形ABCD是由两个小正方形和两个小长方形组成的,根据图形写出一个正确的等式:_________.
10、(4分)正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=2,AE=8,则ED=_____.
11、(4分)观察式子,,,……,根据你发现的规律可知,第个式子为______.
12、(4分)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是 分.
13、(4分)如图,以正方形ABCD的BC边向外作正六边形BEFGHC,则∠ABE=___________度.
三、解答题(本大题共5个小题,共48分)
14、(12分)星马公司到某大学从应届毕业生中招聘公司职员,对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试成果认定,三项得分满分都为100分,三项的分数分别为 的比例计入每人的最后总分,有4位应聘者的得分如下所示:
(1)写出4位应聘者的总分;
(2)已知这4人专业知识、英语水平、参加社会实践与社团活动等三项的得分对应的方差分别为12.5、6.25、200,你对应聘者有何建议?
15、(8分)已知一次函数图像过点P(0,6),且平行于直线y=-2x
(1)求该一次函数的解析式
(2)若点A(,a)、B(2,b)在该函数图像上,试判断a、b的大小关系,并说明理由。
16、(8分)如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).
(1)求k的值;
(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.
(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.
17、(10分)如图,在中,,相交于点,点在上,点在上,经过点.求证:四边形是平行四边形.
18、(10分)先化简,再求值:
(1),其中.
(2),并在2,3,4,5这四个数中取一个合适的数作为的值代入求值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.
20、(4分)已知,若整数满足,则__________.
21、(4分)某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是_______元.
22、(4分)已知锐角,且sin=cs35°,则=______度.
23、(4分)如图,在平行四边形ABCD中,AD=5,AB=3,BE平分∠ABC,则DE=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)计算: (2)计算:
25、(10分)在矩形中,点在上,,,垂足为.
(1)求证:;
(2)若,且,求.
26、(12分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.
(1)求证:四边形BEDF是平行四边形;
(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
先把常数项移到方程右侧,再把方程两边加上4,然后把方程左边写成完全平方形式即可.
【详解】
解:x2+4x=−1,
x2+4x+4=1,
(x+2)2=1.
故选:C.
本题考查了解一元二次方程−配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
2、D
【解析】
根据正比例函数解析式及反比例函数解析式确定其函数图象经过的象限即可.
【详解】
解:函数中,所以其图象过一、三象限,函数中,所以其图象的两支分别位于第一、三象限,符合的为D选项.
故选D.
本题综合考查了一次函数与反比例函数的图象,熟练掌握函数的系数与其图象经过的象限的关系是解题的关键.
3、A
【解析】
根据菱形及平行四边形的性质,结合选项即可得出答案.
【详解】
A、对角线互相垂直是菱形具有,平行四边形不具有的性质,故本选项正确;
B、对边平行是菱形和平行四边形都具有的性质,故本选项错误;
C、对边相等是菱形和平行四边形都具有的性质,故本选项错误;
D、对角线互相平分是菱形和平行四边形都具有的性质,故本选项错误.
故选A.
此题考查了平行四边形及菱形的性质,属于基础题,关键是熟练掌握特殊图形的基本性质.
4、D
【解析】
根据分子等于0,且分母不等于0列式求解即可.
【详解】
由题意得
,
解得
x=-1.
故选D.
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.
5、B
【解析】
分析:根据分式的值为0的条件:分子等于0,分母≠0,构成不等式组求解即可.
详解:由题意可知:
解得x=-1.
故选B.
点睛:此题主要考查了分式的值为0的条件,利用分式的值为0的条件:分子等于0,分母≠0,构造不等式组求解是解题关键.
6、D
【解析】
根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的想知道的∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论
【详解】
ABCD为平行四边形,
所以,AD∥BC,
所以,∠AEG=∠EGF,
由折叠可知:∠GEF=∠DEF=60°,
所以,∠AEG=60°,
所以,∠EGF=60°,
所以,三有形EGF为等边三角形,
因为EF=6,
所以,△GEF的周长为18
此题考查翻折变换(折叠问题),平行四边形的性质,解题关键在于得出∠GEF=∠DEF=60°
7、C
【解析】
根据算术平方根定义、二次根式的加法、除法和二次根式的性质逐一计算即可得.
【详解】
解:A、=2,此选项错误;
B、、不是同类二次根式,不能合并,此选项错误;
C、=2÷=2,此选项正确;
D、=2,此选项错误;
故选:C.
本题主要考查二次根式的混合运算,解题的关键是掌握算术平方根定义、二次根式的加法、除法和二次根式的性质.
8、D
【解析】
连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.
【详解】
解:如图,连接BF,
在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,
∠ABC=180°-∠BAD=180°-80°=100°,
∵EF是线段AB的垂直平分线, ∴AF=BF,∠ABF=∠BAC=40°,
∴∠CBF=∠ABC-∠ABF=100°-40°=60°,
∵在△BCF和△DCF中,
,
∴△BCF≌△DCF(SAS),
∴∠CDF=∠CBF=60°,
故选:D.
本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
由图可得,
正方形ABCD的面积=,
正方形ABCD的面积=,
∴.
故答案为:.
10、1
【解析】
解:如图,过B作BP⊥EH于P,连接BE,交FH于N,则∠BPG=90°.∵四边形ABCD是正方形,∴∠BCD=∠ABC=∠BAD=90°,AB=BC,∴∠BCD=∠BPG=90°.∵GB平分∠CGE,∴∠EGB=∠CGB.又∵BG=BG,∴△BPG≌△BCG,∴∠PBG=∠CBG,BP=BC,∴AB=BP.∵∠BAE=∠BPE=90°,BE=BE,∴Rt△ABE≌Rt△PBE(HL),∴∠ABE=∠PBE,∴∠EBG=∠EBP+∠GBP=∠ABC=15°,由折叠得:BF=EF,BH=EH,∴FH垂直平分BE,∴△BNM是等腰直角三角形.∵BM=2,∴BN=NM=2,∴BE=1.∵AE=8,∴Rt△ABE中,AB==12,∴AD=12,∴DE=12﹣8=1.故答案为1.
点睛:本题考查了翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.
11、
【解析】
分别找出分子指数规律和分母指数规律,再结合符号规律即可得出答案.
【详解】
∵,,,……,
∴第n个式子为(−1)n+1•
故答案为:(−1)n+1•.
主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律
12、1
【解析】
利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.
【详解】
小海这学期的体育综合成绩=(80×40%+90×60%)=1(分).
故答案为1.
13、1
【解析】
分别求出正方形ABCD的内角∠ABC和正六边形BEFGHC的内角∠CBE的度数,进一步即可求出答案.
【详解】
解:∵四边形ABCD是正方形,
∴∠ABC=90°,
∵六边形BEFGHC是正六边形,
∴∠CBE=,
∴∠ABE=360°-(∠ABC+∠CBE)=360°-(90°+120°)=1°.
故答案为:1.
本题主要考查了正多边形的内角问题,属于基础题型,熟练掌握多边形的内角和公式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)A总分为86分,B总分为82分,C总分为81分,D总分为82分;(2)见详解
【解析】
(1)求四位应聘者总分只需将各部分分数按比例相加即可;
(2)根据方差的意义分析即可.
【详解】
解:(1)应聘者A总分为85×50%+85×30%+90×20%=86分;
应聘者B总分为85×50%+85×30%+70×20%=82分;
应聘者C总分为80×50%+90×30%+70×20%=81分;
应聘者D总分为90×50%+90×30%+50×20%=82分;
(2)对于应聘者的专业知识、英语水平的差距不大,但参加社会实践与社团活动等方面的差距较大,影响学生的最后成绩,将影响学生就业.学生不仅注重自己的文化知识的学习,更应注重社会实践与社团活动的开展,从而促进学生综合素质的提升.
本题考查方差的意义:一组数据中各数据与这组数据的平均数的差的平方的平均数叫做这组数据的方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
15、(1)y=-2x+6 (2)答案见解析
【解析】
(1)根据两一次函数图像平行,可得到k的值相等,因此设一次函数解析式为y=-2x+b,再将点P的坐标代入函数解析式就可求出b的值,就可得到函数解析式;
(2)利用一次函数的性质:k<0时,y随x的增大而减小,比较点A,B的横坐标的大小,就可求得a,b的大小关系
【详解】
(1)解:∵ 一次函数图像过点P(0,6),且平行于直线y=-2x,
∴设这个一次函数解析式为y=-2x+b
∴b=6
∴该一次函数解析式为y=-2x+6;
(2)解:∵一次函数解析式为y=-2x+6,k=-2<0
∴y随x的增大而减小;
∵ 点A(,a)、B(2,b)在该函数图像上且,
∴a>b
此题主要考查了一次函数的图象和性质,关键是掌握一次函数图象平行时,k值相等.
16、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.
【解析】
(1)将点E坐标(﹣8,0)代入直线y=kx+6就可以求出k值,从而求出直线的解析式;
(2)由点A的坐标为(﹣6,0)可以求出OA=6,求△OPA的面积时,可看作以OA为底边,高是P点的纵坐标的绝对值.再根据三角形的面积公式就可以表示出△OPA.从而求出其关系式;根据P点的移动范围就可以求出x的取值范围.
(3)分点P在x轴上方与下方两种情况分别求解即可得.
【详解】
(1)∵直线y=kx+6过点E(﹣8,0),
∴0=﹣8k+6,
k=;
(2)∵点A的坐标为(﹣6,0),
∴OA=6,
∵点P(x,y)是第二象限内的直线上的一个动点,
∴△OPA的面积S=×6×(x+6)=x+18 (﹣8<x<0);
(3)设点P的坐标为(m,n),则有S△AOP=,
即,
解得:n=±,
当n=时,=x+6,解得x=,
此时点P在x轴上方,其坐标为(,);
当n=-时,-=x+6,解得x=,
此时点P在x轴下方,其坐标为(,),
综上,点P坐标为:(,)或(,).
本题考查了待定系数法、三角形的面积、点坐标的求法,熟练掌握待定系数法、正确找出各量间的关系列出函数解析式,分情况进行讨论是解题的关键.
17、见解析.
【解析】
先利用平行四边形的性质得到,;再利用平行线性质证得,;利用三角形全等可得,即可求证.
【详解】
在中,,相交于点,
,.
,.
(AAS).
.
四边形是平行四边形.
本题考查了平行四边形的证明,难度适中,熟练掌握平行四边形的性质是解题的关键.
18、(1),;(2),时,原式.或(则时,原式)
【解析】
(1)根据分式的运算法则把所给的分式化为最简分式后,再代入求值即可;(2)根据分式的运算法则把所给的分式化为最简分式后,再选择一个使每个分式都有意义的a的值代入求值即可.
【详解】
(1)
,
当时,原式.
(2)原式
,
∵、2、3,
∴或,
则时,原式.或(则时,原式)只要一个结果正确即可
本题考查了分式的化简求值,根据分式的运算法则把所给的分式化为最简分式是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、36°
【解析】
由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.
【详解】
∵五边形ABCDE是正五边形,
∴∠B=108°,AB=CB,
∴∠ACB=(180°﹣108°)÷2=36°;
故答案为36°.
20、
【解析】
先根据确定m的取值范围,再根据,推出,最后利用来确定a的取值范围.
【详解】
解:
为整数
为
故答案为:1.
本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出的取值范围是解此题的关键.
21、13
【解析】
试题解析:
故答案为
点睛:题目主要考查加权平均数.分别用单价乘以相应的百分比然后相加,计算即可得解.
22、1
【解析】
对于任意锐角A,有sinA=cs(90°-A),可得结论.
【详解】
解:∵sinα=cs35°,
∴α=90°-35°=1°,
故答案为:1.
此题考查互余两角的三角函数,关键是根据互余两角的三角函数的关系解答.
23、1
【解析】
根据平行四边形性质求出AD∥BC,由平行线的性质可得∠AEB=∠CBE,然后由角平分线的定义知∠ABE=∠AEB,所以∠ABE=∠AEB,即可得AB=AE,由此即可求出DE的长.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEB=∠CBE.
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE=3,
∴DE=AD-AE=5-3=1.
故答案是:1.
本题考查了平行四边形性质、三角形的角平分线的定义,平行线的性质的应用,证得AB=AE是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)15;(2).
【解析】
(1)先进行二次根式的化简,然后再根据二次根式乘除法的运算法则进行计算即可;
(2)先分别化简各个二次根式,然后再进行合并即可.
【详解】
(1)原式=3×5÷
=15÷
=15;
(2)原式=3﹣4+
=-+.
本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
25、(1)见解析;(2)AD=.
【解析】
(1)利用“AAS”证明△ADF≌△EAB即可得;
(2)证明△AFD是等腰直角三角形,得出AF=DF=AB=4,利用勾股定理即可求出AD.
【详解】
(1)证明:在矩形ABCD中,AD∥BC,
∴∠AEB=∠DAF,
又∵DF⊥AE,
∴∠DFA=90°,
∴∠DFA=∠B,
在△ADF和△EAB中,,
∴△ADF≌△EAB(AAS),
∴DF=AB;
(2)解:∵∠FEC=135°,
∴∠AEB=180°−∠FEC=45°,
∴∠DAF=∠AEB=45°,
∴△AFD是等腰直角三角形,
∴AF=DF=AB=4,
∴AD=.
本题主要考查矩形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质及勾股定理;熟练掌握矩形的性质,证明三角形全等是解题的关键.
26、 (1)见解析;(2)见解析.
【解析】
试题分析:(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证;
(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.
试题解析:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;
(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.
考点:矩形的性质;平行四边形的判定与性质;菱形的判定;探究型.
题号
一
二
三
四
五
总分
得分
项目
得分
应聘者
专业知识
英语水平
参加社会实践与社团活动等
A
85
85
90
B
85
85
70
C
80
90
70
D
80
90
50
相关试卷
这是一份2024-2025学年江苏省泰兴市实验初级中学数学九年级第一学期开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省海门市城北初级中学九年级数学第一学期开学学业水平测试模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年江苏省泰兴市老叶初级中学九上数学期末考试模拟试题含答案,共7页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)