2025届江苏省泰州市泰州中学九上数学开学监测模拟试题【含答案】
展开
这是一份2025届江苏省泰州市泰州中学九上数学开学监测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( )
A.4,5B.5,4C.4,4D.5,5
2、(4分)如图,菱形ABCD中,点M是AD的中点,点P由点A出发,沿A→B→C→D作匀速运动,到达点D停止,则△APM的面积y与点P经过的路程x之间的函数关系的图象大致是( )
A.B.
C.D.
3、(4分)如图,长方形ABCD中,BE、CE分别平分∠ABC和∠DCB,点E在AD上,①△ABE≌△DCE;②△ABE和△DCE都是等腰直角三角形;③AE=DE;④△BCE是等边三角形,以上结论正确的有( )
A.1个B.2个C.4个D.3个
4、(4分)若,则下列不等式成立的是( )
A.B.C.D.
5、(4分)下列式子:①y=3x﹣5;②y=;③y=;④y2=x;⑤y=|x|,其中y是x的函数的个数是( )
A.2个B.3个C.4个D.5个
6、(4分)如图,在菱形ABCD中,AC与BD相交于点O,AC=6,BD=8,则菱形边长AB等于( )
A.10B.C.5D.6
7、(4分)将一张矩形纸片沿一组对边和的中点连线对折,对折后所得矩形恰好与原矩形相似,若原矩形纸片的边,则的长为( )
A.B.C.D.2
8、(4分)已知二次函数y=ax2+bx+c的x与y的部分对应值如下表:
下列结论:①a<1;②方程ax2+bx+c=3的解为x1=1, x2=2;③当x>2时,y<1.
其中所有正确结论的序号是( )
A.①②③B.①C.②③D.①②
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为_______°.
10、(4分)分解因式:5x3﹣10x2=_______.
11、(4分)己知关于的分式方程有一个增根,则_____________.
12、(4分)二次根式中,x的取值范围是________.
13、(4分)如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的长和宽分别是5cm,3cm.EB的长是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)计算:.
(2)解方程:x2﹣5x=0
15、(8分)A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.
16、(8分)(1)分解因式:;
(2)化简:.
17、(10分)全国在抗击“新冠肺炎”疫情期间,甲,乙两家公司共同参与一项改建有1800个床位的方舱医院的工程.已知甲,乙两家公司每小时改建床位的数量之比为3:1.且甲公司单独完成此项工程比乙公司单独完成此项工程要少用10小时,
(1)分别求甲,乙两家公司每小时改建床位的数量;
(1)甲,乙两家公司完成该项工程,若要求乙公司的工作时间不得少于甲公司的工作时间的,求乙公司至少工作多少小时?
18、(10分)已知:实数a,b在数轴上的位置如图所示,化简:+﹣|a﹣b|.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:(-2019)0×5-2=________.
20、(4分)在△MBN中,BM=6,BN=7,MN=10,点A、C、D分别是MB、NB、MN的中点,则四边形ABCD的周长是_______;
21、(4分)如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是__.
22、(4分)因式分解:___________.
23、(4分)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)2018年1月25日,济南至成都方向的高铁线路正式开通,高铁平均时速为普快平均时速的4倍,从济南到成都的高铁运行时间比普快列车减少了26小时,济南市民早上可在济南吃完甜沫油条,晚上在成都吃麻辣火锅了.已知济南到成都的火车行车里程约为2288千米,求高铁列车的平均时速.
25、(10分)某校为了了解学生在校吃午餐所需时间的情况,抽查了20名同学在校吃午餐所花的时间,获得如下数据(单位:min):
10,12,15,10,16,18,19,18,20,38,
22,25,20,18,18,20,15,16,21,16.
(1)若将这些数据分为6组,请列出频数表,画出频数直方图;
(2)根据频数直方图,你认为校方安排学生吃午餐时间多长为宜?请说明理由.
26、(12分)随着生活水平的不断提高,越来越多的人选择到电影院观看电影,体验视觉盛宴,并且更多的人通过网上平台购票,既快捷又能享受更多优惠.某电影城2019年从网上购买张电影票的费用比现场购买张电影票的费用少元:从网上购买张电影票的费用和现场购买张电影票的费用共元.
(1)求该电影城2019年在网上购票和现场购票每张电影票的价格为多少元?
(2)2019年五一当天,该电影城按照2019年网上购票和现场购票的价格销售电影票,当天售出的总票数为张.五一假期过后,观影人数出现下降,于是电影城决定从5月5日开始调整票价:现场购票价格下调,网上购票价格不变,结果发现,现场购票每张电影票的价格每降低元,售出总票数就比五一当天增加张.经统计,5月5日售出的总票数中有的电影票通过网上售出,其余通过现场售出,且当天票房总收入为元,试求出5月5日当天现场购票每张电影票的价格为多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据众数及中位数的定义,结合所给数据即可作出判断.
【详解】
解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4
故选:A.
本题考查(1)、众数;(2)、中位数.
2、D
【解析】
根据菱形的性质及三角形面积的计算公式可知当点P在BC边上运动时△APM的高不度面积不变,结合选项马上可得出答案为D
【详解】
解:当点P在AB上运动时,可知△APM的面积只与高有关,而高与运动路程AP有关,是一次函数关系;当点P在BC上时,△APM的高不会发生变化,所以此时△APM的面积不变;
当点P在CD上运动时,△APM的面积在不断的变小,并且它与运动的路程是一次函数关系
综上所述故选:D.
本题考查了动点问题的函数图象:利用点运动的几何性质列出有关的函数关系式,然后根据函数关系式画出函数图象,注意自变量的取值范围.
3、D
【解析】
根据矩形性质得出∠A=∠D=90°,AB=CD,AD∥BC,推出∠AEB=∠EBC,∠DEC=∠ECB,求出∠AEB=∠ABE,∠DCE=∠DEC,推出AB=AE,DE=DC,推出 AE=DE,根据SAS推出△ABE≌△DCE,推出BE=CE即可.
【详解】
∵四边形ABCD是矩形,
∴∠A=∠D=90°,AB=CD,AD∥BC,
∴∠AEB=∠EBC,∠DEC=∠ECB,
∵BE、CE分别平分∠ABC和∠DCB,
∴∠ABE=∠EBC,∠DCE=∠ECB,
∴∠AEB=∠ABE,∠DCE=∠DEC,
∴AB=AE,DE=DC,
∴AE=DE,
∴△ABE和△DCE都是等腰直角三角形,
在△ABE和△DCE中,
,
∴△ABE≌△DCE(SAS),
∴BE=CE,∴①②③都正确,
故选D.
此题考查全等三角形的判定与性质,等腰直角三角形,等边三角形的判定,解题关键在于掌握各判定定理.
4、B
【解析】
总的来说,用不等号(,≥,≤,≠)连接的式子叫做不等式.根据不等式的定义即可判定A错误,其余选型根据不等式的性质判定即可.
【详解】
A: a>b,则a-5>b-5,故A错误;
B:a>b, -a<-b,则-2a<-2b, B选项正确.
C:a>b, a+3>b+3,则>,则C选项错误.
D:若0>a>b时,a2<b2,则D选项错误.
故选B
本题主要考查不等式的定义及性质.熟练掌握不等式的性质才能避免出错.
5、C
【解析】
根据函数的定义逐一进行判断即可得.
【详解】
①y=3x﹣5,y是x的函数;
②y=,y是x的函数;
③y=,y是x的函数;
④y2=x,当x取一个值时,有两个y值与之对应,故y不是x的函数;
⑤y=|x|,y是x的函数,
故选C.
本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
6、C
【解析】
根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.
【详解】
∵四边形ABCD是菱形,
∴OA=AC,OB=BD,AC⊥BD,
∵AC=8,BD=6,
∴OA=4,OB=3,
∴AB==1,
即菱形ABCD的边长是1.
故选:C.
考查了菱形的对角线互相垂直平分的性质和勾股定理的应用,熟记菱形的对角线的关系(互相垂直平分)是解题的关键.
7、C
【解析】
根据相似多边形对应边的比相等,设出原来矩形的长,就可得到一个方程,解方程即可求得.
【详解】
解:根据条件可知:矩形AEFB∽矩形ABCD,
∴,
设AD=BC=x,AB=1,则AE=x.则,即:x2=1.
∴x=或﹣(舍去).
故选:C.
本题考查了相似多边形的性质,根据相似形的对应边的比相等,把几何问题转化为方程问题,正确分清对应边,以及正确解方程是解决本题的关键.
8、D
【解析】
根据表格数据求出二次函数的对称轴为直线x=1,然后根据二次函数的性质对各小题分析判断即可得解.
【详解】
解:①由图表中数据可知:x=−1和3时,函数值为−3,所以,抛物线的对称轴为直线x=1,而x=1时,y=5最大,所以二次函数y=ax2+bx+c开口向下,a<1;故①正确;
②∵二次函数y=ax2+bx+c的对称轴为x=1,在(1,3)的对称点是(2,3),∴方程ax2+bx+c=3的解为x1=1,x2=2;故②正确;
③∵二次函数y=ax2+bx+c的开口向下,对称轴为x=1,(1,3)的对称点是(2,3),∴当x>2时,y<3;故③错误;
所以,正确结论的序号为①②
故选D.
本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,有一定难度.熟练掌握二次函数图象的性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
∵□ABCD与□DCFE的周长相等,且有公共边CD,
∴AD=DE,∠ADE=∠BCF=60°+70°=130°.
∴.
10、5x2(x-2)
【解析】
5x3-10x2=2x2(x-2)
11、
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.
【详解】
方程两边都乘(x−3),得
x−2(x−3)=k+1,
∵原方程有增根,
∴最简公分母x−3=0,即增根是x=3,
把x=3代入整式方程,得k=2.
本题主要考查了分式方程的增根,熟悉掌握步骤是关键.
12、
【解析】
根据二次根式有意义的条件进行求解即可得.
【详解】
根据题意,得
,
解得,,
故答案为:.
本题考查了二次根式有意义的条件,熟练掌握“式子叫二次根式、二次根式中的被开方数必须是非负数”是解题的关键.
13、1cm
【解析】
根据菱形的四边相等,可得AB=BC=CD=AD=5,在Rt△AED中,求出AE即可解决问题.
【详解】
解:∵四边形ABCD是菱形,
∴AB=BC=CD=AD=5(cm),
∵DE⊥AB,DE=3(cm),
在Rt△ADE中,AE==4,
∴BE=AB−AE=5−4=1(cm),
故答案为1cm.
本题考查了菱形的性质、勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,试题难度不大.
三、解答题(本大题共5个小题,共48分)
14、 (1) ;(2) x1=0,x2=1.
【解析】
(1)先把化简,然后合并即可;
(2)利用因式分解法解方程.
【详解】
(1)原式=2﹣=;
(2)x(x﹣1)=0,
x=0或x﹣1=0,
所以x1=0,x2=1.
本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
15、甲车的速度是60千米/时,乙车的速度是90千米/时.
【解析】
根据题意,设出甲、乙的速度,然后根据题目中两车相遇时时间相同,列出方程,解方程即可.
【详解】
设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,
,
解得,x=60,
经检验,x=60是原方程的解.
则x+30=90,
即甲车的速度是60千米/时,乙车的速度是90千米/时.
16、(1) ;(2) .
【解析】
(1)先提取公因式,再根据完全平方公式分解即可;
(2)原式通分并利用分式的加法法则计算即可得到结果
【详解】
解:(1)
=
= ;
(2)
=
=
=
= .
本题考查分解因式和分式的加法运算,能灵活运用知识点进行计算和化简是解题的关键.
17、(1)甲公司每小时改建床位的数量是45个,乙公司公司每小时改建床位的数量是30个;(1)2小时
【解析】
(1)设甲公司每小时改建床位的数量是x个,则乙公司公司每小时改建床位的数量是y个,根据甲,乙两家公司每小时改建床位的数量之比为3:1;甲做的工作量+乙做的工作量=工作总量建立方程组求出其解即可;
(1)设乙公司工作z小时,根据乙公司的工作时间不得少于甲公司的工作时间的,建立不等式求出其解即可.
【详解】
解:(1)设甲公司每小时改建床位的数量是x个,则乙公司公司每小时改建床位的数量是y个,依题意有
,
解得,,
经检验,是方程组的解且符合题意,
故甲公司每小时改建床位的数量是45个,乙公司公司每小时改建床位的数量是30个;
(1)设乙公司工作z小时,依题意有
z≥×,
解得z≥2.
故乙公司至少工作2小时.
本题考查了一元一次不等式的应用、列分式方程和二元一次方程组解实际问题的运用,是一道工程问题的运用题,解答时根据甲的工作效率+乙的工作效率=合作一天的工作效率为等量关系建立方程是关键,第二问列出不等式是解题的关键.
18、-2
【解析】
本题运用实数与数轴的对应关系确定-2<a<-1,1<b<2,且b>a,然后根据开方运算的性质和绝对值的意义化简即可求解.
【详解】
由数轴上点的位置关系,得-2<a<-1,1<b<2,
∴a+10,a-b
相关试卷
这是一份2025届江苏省泰州市姜堰区实验初级中学九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省泰州市名校九上数学开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省泰州市泰兴市数学九上开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。