年终活动
搜索
    上传资料 赚现金

    2025届江苏省无锡市洛社中学九年级数学第一学期开学复习检测模拟试题【含答案】

    2025届江苏省无锡市洛社中学九年级数学第一学期开学复习检测模拟试题【含答案】第1页
    2025届江苏省无锡市洛社中学九年级数学第一学期开学复习检测模拟试题【含答案】第2页
    2025届江苏省无锡市洛社中学九年级数学第一学期开学复习检测模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届江苏省无锡市洛社中学九年级数学第一学期开学复习检测模拟试题【含答案】

    展开

    这是一份2025届江苏省无锡市洛社中学九年级数学第一学期开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在Rt△ABC中,AC=4,∠ABC=90°,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,则图中阴影部分面积为( )
    A.1B.1.5C.2D.2.5
    2、(4分)若式子有意义,则x的取值范围为( ).
    A.x≥2B.x≠2C.x≤2D.x<2
    3、(4分)下列调查中,最适合采用全面调查(普查)方式的是( )
    A.对无锡市空气质量情况的调查B.对某校七年级()班学生视力情况的调查
    C.对某批次手机屏使用寿命的调查D.对全国中学生每天体育锻炼所用时间的调查
    4、(4分)对于一次函数y=-3x+2,①图象必经过点(-1,-1);②图象经过第一、二、四象限;③当x>1时,y0时,x>−3.
    故选:B
    此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.
    6、D
    【解析】
    根据直线y=ax+b经过第一、二、四象限,可以判断a和b的正负,从而可以判断直线y=bx+a经过哪几个象限,本题得以解决.
    【详解】
    解:∵直线y=ax+b经过第一、二、四象限,
    ∴a<0,b>0,
    ∴y=bx+a经过第一、三、四象限,
    故选:D.
    本题考查一次函数的性质和图象,解答本题的关键是明确题意,利用一次函数的性质解答.
    7、D
    【解析】
    根据直线所在的象限,确定k,b的符号.
    【详解】
    由图象可知,两条直线的一次项系数都是负数,且一条直线与y轴的交点在y轴的正半轴上,b为正数,另一条直线的与y轴的交点在y轴的负半轴上,b为负数,符合条件的方程组只有D.
    故选D.
    一次函数y=kx+b的图象所在象限与常数k,b的关系是:①当k>0,b>0时,函数y=kx+b的图象经过第一,二,三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一,三,四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一,二,四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二,三,四象限,反之也成立.
    8、B
    【解析】
    △ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.
    【详解】
    解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,
    当P点由B运动到C点时,即2<x<4时,y=×2×2=2,
    符合题意的函数关系的图象是B;
    故选B.
    本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(1);(2)猜想:
    【解析】
    (1)此题应先观察列举出的式子,可找出它们的一般规律,直接写出第④个等式即可;
    (2)找出它们的一般规律,用含有n的式子表示出来,证明时,将等式左边被开方数进行通分,把被开方数的分子开方即可.
    【详解】
    (1)1)观察列举出的式子,可找出它们的一般规律,直接写出第④个等式:
    故答案为:
    (2)猜想:用含自然数的代数式可表示为:
    证明:左边右边,所以猜想正确.
    本题主要考查学生把特殊归纳到一般的能力及二次根式的化简,解题的关键是仔细观察,找出各式的内在联系解决问题.
    10、3-
    【解析】
    根据相似三角形面积比等于相似比的平方求得三角形ADE的面积,然后求出其边长,过点F作FH⊥AE,过C作CM⊥AB,利用三角函数求出HF的值,即可得出三角形AFE的面积.
    【详解】
    解:作CM⊥AB于M,
    ∵等边△ABC的面积是4,
    ∴设BM=x,∴tan∠BCM=,
    ∴BM=CM,
    ∴×CM×AB=×2×CM2=4,
    ∴CM=2,BM=2,
    ∴AB=4,AD=AB=2,
    在△EAD中,作HF⊥AE交AE于H,
    则∠AFH=45°,∠EFH=30°,
    ∴AH=HF,
    设AH=HF=x,则EH=xtan30°=x.
    又∵AH+EH=AE=AD=2,
    ∴x+x=2,
    解得x=3-.
    ∴S△AEF=×2×(3-)=3-.
    故答案为3-
    11、﹣1<m<1
    【解析】
    试题分析:让点P的横坐标小于0,纵坐标大于0列式求值即可.
    解:∵点P(m﹣1,m+1)在第二象限,
    ∴m﹣1<0,m+1>0,
    解得:﹣1<m<1.故填:﹣1<m<1.
    【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
    12、13
    【解析】
    ∵点A,C,D分别是MB,NB,MN的中点,
    ∴CD∥AB,AD∥BC,
    ∴四边形ABCD为平行四边形,
    ∴AB=CD,AD=BC.
    ∵BM=6,BN=7,MN=10,点A,C分别是MB,NB的中点,
    ∴AB=3,BC=3.5,
    ∴四边形ABCD的周长=(AB+BC)×2=(3+3.5)×2=13.
    13、5
    【解析】
    设AC交BD于O,作E关于AC的对称点N,连接NF,交AC于P,则此时EP+FP的值最小,根据菱形的性质推出N是AD中点,P与O重合,推出PE+PF=NF=AB,根据勾股定理求出AB的长即可.
    【详解】
    设AC交BD于O,作E关于AC的对称点N,连接NF,交AC于P,则此时EP+FP的值最小,
    ∴PN=PE,
    ∵四边形ABCD是菱形,
    ∴∠DAB=∠BCD,AD=AB=BC=CD,OA=OC,OB=OD,AD∥BC,
    ∵E为AB的中点,
    ∴N在AD上,且N为AD的中点,
    ∵AD∥CB,
    ∴∠ANP=∠CFP,∠NAP=∠FCP,
    ∵AD=BC,N为AD中点,F为BC中点,
    在△ANP和△CFP中
    ∵ ,
    ∴△ANP≌△CFP(ASA),
    ∴AP=CP,
    即P为AC中点,
    ∵O为AC中点,
    ∴P、O重合,
    即NF过O点,
    ∵AN∥BF,AN=BF,
    ∴四边形ANFB是平行四边形,
    ∴NF=AB,
    ∵菱形ABCD,
    ∴AC⊥BD,OA=AC=4,BO=BD=3,
    由勾股定理得:AB= =5,
    故答案为:5.
    此题考查轴对称-最短路线问题,菱形的性质,解题关键在于作辅助线
    三、解答题(本大题共5个小题,共48分)
    14、 (1)1;(2)y=﹣x+;(3)2<k≤1或﹣≤k<2;(1)(2,)或(2,).
    【解析】
    (1)根据A、B、C三点的坐标可得AC=3﹣1=2,BC=5﹣1=1,∠C=92°,再利用三角形面积公式列式计算即可;
    (2)设直线AB的表达式为y=kx+b.将A(1,3),B(5,1)代入,利用待定系数法即可求解;
    (3)由于y=kx+2是一次函数,所以k≠2,分两种情况进行讨论:①当k>2时,求出y=kx+2过A(1,3)时的k值;②当k<2时,求出y=kx+2过B(5,1)时的k值,进而求解即可;
    (1)过C点作AB的平行线,交y轴于点P,根据两平行线间的距离相等,可知△ABP与△ABC是同底等高的两个三角形,面积相等.根据直线平移k值不变可设直线CP的解析式为y=﹣x+n,将C点坐标代入,求出直线CP的解析式,得到P点坐标;再根据到一条直线距离相等的直线有两条,可得另外一个P点坐标.
    【详解】
    解:(1)∵A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1),
    ∴AC=3﹣1=2,BC=5﹣1=1,∠C=92°,
    ∴S△ABC=AC•BC=×2×1=1.
    故答案为1;
    (2)设直线AB的表达式为y=kx+b.
    ∵A点坐标是(1,3),B点坐标是(5,1),
    ∴,解得,
    ∴直线AB的表达式为y=﹣x+;
    (3)当k>2时,y=kx+2过A(1,3)时,
    3=k+2,解得k=1,
    ∴一次函数y=kx+2与线段AB有公共点,则2<k≤1;
    当k<2时,y=kx+2过B(5,1),
    1=5k+2,解得k=﹣,
    ∴一次函数y=kx+2与线段AB有公共点,则﹣≤k<2.
    综上,满足条件的k的取值范围是2<k≤1或﹣≤k<2;
    (1)过C点作AB的平行线,交y轴于点P,此时△ABP与△ABC是同底等高的两个三角形,所以面积相等.
    设直线CP的解析式为y=﹣x+n,
    ∵C点坐标是(1,1),
    ∴1=﹣+n,解得n=,
    ∴直线CP的解析式为y=﹣x+,
    ∴P(2,).
    设直线AB:y=﹣x+交y轴于点D,则D(2,).
    将直线AB向上平移﹣=2个单位,得到直线y=﹣x+,与y轴交于点P′,此时△ABP′与△ABP是同底等高的两个三角形,所以△ABP与△ABC面积相等,易求P′(2,).
    综上所述,所求P点坐标是(2,)或(2,).
    故答案为(2,)或(2,).
    本题考查了三角形的面积,待定系数法求一次函数的解析式,一次函数图象与系数的关系,一次函数图象上点的坐标特征,直线平移的规律等知识,直线较强,难度适中.利用数形结合、分类讨论是解题的关键.
    15、(1)A、B之间的路程为73米;(2)此车超过了永丰路的限制速度.
    【解析】
    (1)首先根据题意,得出,,然后根据,,可得出OB和OA,即可得出AB的距离;
    (2)由(1)中结论,可求出此车的速度,即可判定超过该路的限制速度.
    【详解】
    (1)根据题意,得

    ∵,
    ∴,

    故A、B之间的路程为73米;
    (2)根据题意,得
    4秒=小时,73米=0.073千米
    此车的行驶速度为
    千米/小时
    千米/小时>54千米/小时
    故此车超过了限制速度.
    此题主要考查直角三角形与实际问题的综合应用,熟练掌握,即可解题.
    16、;.
    【解析】
    (1)将方程右边的式子提取-1变形后,方程两边同时乘以2x-1,去分母后求出x的值,将x的代入最简公分母检验,即可得到原分式方程的解;
    (2)将原式被除数括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,把x的值代入化简后的式子中计算,即可得到原式的值.
    【详解】
    (1)
    x=2(2x-1)+3
    x-4x=3-2
    -3x=1
    (2)
    =
    =
    =
    把代入原式=.
    考查了分式的化简求值,以及分式方程的解法,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.
    17、(1)-2xy(x+y);(2)(x-1-y)2
    【解析】
    (1)提公因式x(x+y),合并即可;
    (2)利用完全平方式进行分解.
    【详解】
    (1)原式=x(x+y)[(x-y)-(x+y)]
    =-2xy(x+y)
    (2)原式=(x-1)2-2(x-1)y+y2
    =(x-1-y)2
    本题考查的知识点是提取公因式法因式分解和完全平方式,解题关键是求出多项式里各项的公因式,提公因式.
    18、证明见解析.
    【解析】
    求证四边形AECF是平行四边形,只要求证OE=OF,根据对角线互相平分的四边形是平行四边形即可求证,依据△AOE≌△COF即可证明OE=OF.
    【详解】
    证明:∵平行四边形ABCD中AB∥CD,
    ∴∠OAE=∠OCF,
    又∵OA=OC,∠COF=∠AOE,
    ∴△AOE≌△COF(ASA),
    ∴OE=OF,又∵OA=OC
    ∴四边形AECF是平行四边形.
    本题考查平行四边形的判定与性质,熟练掌握性质是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据已知证明四边形ABED为平行四边形,利用平行四边形的对边相等得BE=AD,从而可求CE.
    解答:解:∵AD∥BC,DE∥AB,
    ∴四边形ABED为平行四边形,
    BE=AD,
    ∴CE=BC-BE=BC-AD=2-1=1.
    点评:本题考查了梯形常用的作辅助线的方法,平行四边形的判定与性质.
    20、(答案不唯一).
    【解析】
    根据题意,函数可以是一次函数,反比例函数或二次函数.例如
    设此函数的解析式为(k>2),
    ∵此函数经过点(1,1),∴k=1.∴此函数可以为:.
    设此函数的解析式为(k<2),
    ∵此函数经过点(1,1),∴, k<2.∴此函数可以为:.
    设此函数的解析式为,
    ∵此函数经过点(1,1),∴.
    ∴此函数可以为:.
    21、2
    【解析】
    根据菱形的对角线互相垂直,利用勾股定理列式求出AC•BD,再根利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.
    【详解】
    如图,
    ∵四边形ABCD是菱形,
    ∴OA=AC,OB=BD,AC⊥BD,
    在Rt△AOB中,∠AOB=90°,
    根据勾股定理,得:OA2+OB2=AB2,
    即(AC+BD)2﹣AC•BD=AB2,
    ×12﹣AC•BD=52,
    AC•BD=48,
    故菱形ABCD的面积是48÷2=2.
    故答案为:2.
    本题考查了菱形的面积公式,菱形的对角线互相垂直平分线的性质,勾股定理的应用,比熟记性质是解题的关键.
    22、1
    【解析】
    分析中先利用直角三角形的性质,然后再利用三角形的中位线定理可得结果.
    【详解】
    ∵AH⊥BC,F是AC的中点,
    ∴FH=AC=1cm,
    ∴AC=20cm,
    ∵点E,D分别是AB,BC的中点,
    ∴ED=AC,
    ∴ED=1cm.
    故答案为:1.
    本题考查的知识点:三角形中位线定理和直角三角形斜边上的中线等于斜边的一半,是基础知识较简单.
    23、AD=BC.
    【解析】
    直接利用平行四边形的判定方法直接得出答案.
    【详解】
    当AD∥BC,AD=BC时,四边形ABCD为平行四边形.
    故答案是AD=BC(答案不唯一).
    二、解答题(本大题共3个小题,共30分)
    24、(1)体育场离张强家,张强从家到体育场用了;(2)体育场离文具店;(3)张强在文具店停留了;(4)()
    【解析】
    (1)根据y轴的分析可得体育场离张强家的距离,根据x轴可以分析出张强从家到体育场用了多少时间.
    (2)通过图象可得张强在45min的时候,到达了文具店,通过图象观察体育场离文具店的距离为2.5-1.5=1.
    (3)根据图象可得张强在45min到65min之间是运动的路程为0,因此可得在文具店停留的时间.
    (4)已知在65min是路程为1.5,100min是路程为0,采用待定系数法计算可得一次函数的解析式.
    【详解】
    解:
    (1)体育场离张强家,张强从家到体育场用了
    (2)体育场离文具店
    (3)张强在文具店停留了
    (4)设张强从文具店回家过程中与的函数解析式为,
    将点,代入得

    解得,
    ∴()
    本题主要考查图象的分析识别能力,这是考试的热点,应当熟练掌握,注意第四问要写出自变量的范围.
    25、 甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件.
    【解析】
    【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;
    设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.
    【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,
    根据题意得,,
    解得,
    经检验,是原方程的解,
    答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;
    甲乙两种商品的销售量为,
    设甲种商品按原销售单价销售a件,则

    解得,
    答:甲种商品按原销售单价至少销售20件.
    【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.
    26、见解析.
    【解析】
    在▱ABCD中,根据平行四边形的性质可得AB=CD,AB∥CD,又由于BE=CF,则AE=CF,根据平行四边形的判定可证四边形AECF是平行四边形.
    【详解】
    ∵四边形是平行四边形,
    ∴且



    ∴四边形是平行四边形
    本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.
    题号





    总分
    得分

    相关试卷

    2025届江苏省无锡市洛社中学九年级数学第一学期开学复习检测模拟试题【含答案】:

    这是一份2025届江苏省无锡市洛社中学九年级数学第一学期开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届江苏省无锡市金星中学数学九年级第一学期开学复习检测模拟试题【含答案】:

    这是一份2025届江苏省无锡市金星中学数学九年级第一学期开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省无锡市各地九年级数学第一学期开学检测模拟试题【含答案】:

    这是一份2024年江苏省无锡市各地九年级数学第一学期开学检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map