2025届江苏省盐城市东台市第七联盟数学九年级第一学期开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平行四边形ABCD中,O是对角线AC,BD的交点,下列结论错误的是( )
A.AB∥CDB.AC=BDC.AB=CDD.OA=OC
2、(4分)弹簧挂上物体后伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:下列说法错误的是( )
A.在没挂物体时,弹簧的长度为10cm
B.弹簧的长度随物体的质量的变化而变化,物体的质量是因变量,弹簧的长度是自变量
C.如果物体的质量为mkg,那么弹簧的长度ycm可以表示为y=2.5m+10
D.在弹簧能承受的范围内,当物体的质量为4kg时,弹簧的长度为20cm
3、(4分)如图,在中,,分别以、为圆心,以大于的长为半径画弧,两弧相交于、两点,直线交于点,若的周长是12,则的长为( )
A.6B.7C.8D.11
4、(4分)如图,在矩形纸片ABCD中,BC=a,将矩形纸片翻折,使点C恰好落在对角线交点O处,折痕为BE,点E在边CD上,则CE的长为( )
A.B.C.D.
5、(4分)如图,五边形ABCDE的每一个内角都相等,则外角∠CBF等于( )
A.60°B.72°C.80°D.108°
6、(4分)直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为( )
A.B.C.D.
7、(4分)点P(-4,2)关于原点对称点的坐标P’(-2,-2)则等于 ( )
A.6B.-6C.2D.-2
8、(4分)在学校举办的独唱比赛中,10位评委给小丽的平分情况如表所示:
则下列说法正确的是( )
A.中位数是7.5B.中位数是8C.众数是8D.平均数是8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)方程的根为________.
10、(4分)若关于的方程有增根,则的值是________.
11、(4分)如图是本地区一种产品30天的销售图象,图1是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图2是一件产品的销售利润z(单位,元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列正确结论的序号是____.
①第24天的销售量为200件;
②第10天销售一件产品的利润是15元;
③第12天与第30天这两天的日销售利润相等;
④第30天的日销售利润是750元.
12、(4分)我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这7名同学成绩的______________(填”平均数”“众数”或“中位数”)
13、(4分)不等式组的解集是x>4,那么m的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,直线AB:y=x+2与x轴、y轴分别交于A,B两点,C是第一象限内直线AB上一点,过点C作CD⊥x轴于点D,且CD的长为,P是x轴上的动点,N是直线AB上的动点.
(1)直接写出A,B两点的坐标;
(2)如图①,若点M的坐标为(0,),是否存在这样的P点.使以O,P,M,N为顶点的四边形是平行四边形?若有在,请求出P点坐标;若不存在,请说明理由.
(3)如图②,将直线AB绕点C逆时针旋转交y轴于点F,交x轴于点E,若旋转角即∠ACE=45°,求△BFC的面积.
15、(8分)如图,一次函数的图象与反比例函数的图象交于,两点.
(1)试确定上述反比例函数和一次函数的表达式;
(2)当为何值时反比例函数值大于一次函数的值;
(3)当为何值时一次函数值大于比例函数的值;
(4)求的面积.
16、(8分)先化简,再求值:,其中
17、(10分)如图,在ABC中,∠C=90º,BD是ABC的一条角一平分线,点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形,
(1)求证:点O在∠BAC的平分线上;
(2)若AC=5,BC=12,求OE的长
18、(10分)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(-1,2)、B两点,求m、n的值并直接写出点B的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)2019年1月18日,重庆经开区新时代文明实践“五进企业”系列活动----2019年新春游园会成功矩形,这次新春游园会的门票分为个人票和团体票两大类其中个人票设置有三种,票得种类 夜票(A) 平日普通票(B)指定日普通票(C)某社区居委会欲购买个人票100张,其中B种票的张数是A种票的3倍还多8张,设购买A种票的张数为x,C种票张数为y,则化简后y与x之间的关系式为:_______(不必写出x的取值范围)
20、(4分)若把分式中的x,y都扩大5倍,则分式的值____________.
21、(4分)化简________.
22、(4分)若是一个完全平方式,则_________.
23、(4分)如图,在正方形ABCD中,H为AD上一点,∠ABH=∠DBH,BH交AC于点G.若HD=2,则线段AD的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,甲、乙两船从港口A同时出发,甲船以30海里/时的速度向北偏东35°的方向航行,乙船以40海里/时的速度向另一方向航行,2小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距100海里,则乙船航行的方向是南偏东多少度?
25、(10分)如图,在▱ABCD中,∠ABC的平分线交AD于点E,过点D作BE的平行线交BC于F.
(1)求证:△ABE≌△CDF;
(2)若AB=6,BC=8,求DE的长.
26、(12分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,3).
(1)画出△ABC绕点B逆时针旋转90°得到的△A1BC1.
(2)以原点O为位似中心,位似比为2:1,在y轴的左侧,画出将△ABC放大后的△A2B2C2,并写出A2点的坐标_________.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题分析:根据平行四边形的性质推出即可.
解:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,OA=OC,
但是AC和BD不一定相等,
故选B.
2、B
【解析】
因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y弹簧长度;弹簧的长度有一定范围,不能超过.
【详解】
解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;
B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;
C、当物体的质量为mkg时,弹簧的长度是y=12+2.5m,故此选项正确,不符合题意;
D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;
故选B.
点评:此题考查了函数关系式,主要考查了函数的定义和结合几何图形列函数关系式.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
3、B
【解析】
利用垂直平分线的作法得MN垂直平分AC,则,利用等线段代换得到△CDE的周长,即可解答.
【详解】
由作图方法可知,直线是的垂直平分线,
所以,
的周长,
所以,,所以,选项B正确.
此题考查平行四边形的性质,作图—基本作图,解题关键在于得到△CDE的周长.
4、C
【解析】
根据折叠的性质得到BC=BO,∠BCD=∠BOE=90°,根据等腰三角形的性质得到BE=DE,再利用勾股定理得到结论.
【详解】
∵由折叠可得, BC=BO,∠BCD=∠BOE=90°, ∴BC=BO,BE=DE,∵BD=2BO, BC=a
∴BD=2a,
∵在矩形纸片ABCD中,BC=a,BD=2a,,
由勾股定理求得: DC=a,
设CE=x,则DE=DC-CE=a-x,
在Rt△BCE中,,
解得:x=,
即AE的长为.故选C.
本题考查了翻折变换的性质,矩形的性质,熟练掌握折叠的性质是解题的关键.
5、B
【解析】
由题意可知五边形的每一个外角都相等,五边形的外角和为,由计算即可求得 ∠CBF 的大小.
【详解】
解:因为五边形的每一个内角都相等,所以五边形的每一个外角都相等,则每个外角=.
故答案为: B
本题考查了多边形的外角和,n边形的外角和为,若多边形的外角都相等即可知每个外角的度数,熟练掌握多边形的外角和定理是解题的关键.
6、C
【解析】
根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可.
【详解】
设直角三角形的两条直角边分别为x、y,
斜边上的中线为d,
斜边长为2d,
由勾股定理得,,
直角三角形的面积为S,
,
则,
则,
,
这个三角形周长为:,
故选C.
【点睛】本题考查了勾股定理的应用,解题的关键是根据直角三角形的两条直角边长分别是a,b,斜边长为c,得出.
7、A
【解析】
根据关于原点对称的点的坐标特点进行求解.
【详解】
解:∵点P(a-4,2)关于原点对称的点的坐标P′(-2,-2),
∴a-4=2,
∴a=6,
故选:A.
本题考查了关于原点对称的点的坐标特点,关键是熟记关于原点对称的点的横纵坐标都变为相反数.
8、A
【解析】
分别利用众数、中位数及加权平均数的定义及公式求得答案后即可确定符合题意的选项.
【详解】
∵共10名评委,
∴中位数应该是第5和第6人的平均数,为7分和8分,
∴中位数为:7.5分,
故A正确,B错误;
∵成绩为6分和8分的并列最多,
∴众数为6分和8分,
故C错误;
∵平均成绩为:=8.5分,
故D错误,
故选:A.
本题考查了众数、中位数及加权平均数的知识,解题的关键是能够根据定义及公式正确的求解,难度不大.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
运用因式分解法可解得.
【详解】
由得
故答案为:
考核知识点:因式分解法解一元二次方程.
10、.
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-2=0,所以增根是x=2,把增根代入化为整式方程的方程即可求出未知字母的值.
【详解】
解:方程两边都乘x-2,得
∵方程有增根,
∴最简公分母x-2=0,即增根是x=2,
把x=2代入整式方程,得.
故答案为:.
考查了分式方程的增根,增根问题可按如下步骤进行:
①根据最简公分母确定增根的值;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
11、①②④.
【解析】
图1是产品日销售量y(单位:件)与时间t单位:天)的函数图象,观察图象可对①做出判断;通过图2求出z与t的函数关系式,求出当t=10时z的值,对②做出判断,通过图1求出当0≤t≤24时,产品日销售量y与时间t的函数关系式,分别求出第12天和第30天的销售利润,对③④进行判断,最后综合各个选项得出答案.
【详解】
解:图1反应的是日销售量y与时间t之间的关系图象,过(24,200),因此①是正确的,
由图2可得:z= ,
当t=10时,z=15,因此②也是正确的,
当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=kt+b,
把(0,100),(24,200)代入得:,
解得: ,
∴y=t+100(0≤t≤24),
当t=12时,y=150,z=-12+25=13,
∴第12天的日销售利润为;150×13=1950(元),第30天的销售利润为:150×5=750元,
因此③不正确,④正确,
故答案为:①②④.
本题考查一次函数的应用,分段函数的意义和应用以及待定系数法求函数的关系式等知识,正确的识图,分段求出相应的函数关系式是解决问题的关键.
12、中位数
【解析】
七名选手的成绩,如果知道中位数是多少,与自己的成绩相比较,就能知道自己是否能进入前四名,因为中位数是七个数据中的第四个数,
【详解】
解:因为七个数据从小到大排列后的第四个数是这七个数的中位数,知道中位数,然后与自己的成绩比较,就知道能否进入前四,即能否参加决赛.
故答案为:中位数.
考查中位数、众数、平均数反映一组数据的特征,中位数反映之间位置的数,说明比它大的占一半,比它小的占一半;众数是出现次数最多的数,平均数反映一组数据的平均水平和集中趋势,理解意义是正确判断的前提.
13、m≤1
【解析】
根据不等式组解集的求法解答.求不等式组的解集.
【详解】
不等式组的解集是x>1,得:m≤1.
故答案为m≤1.
本题考查了不等式组解集,求不等式组的解集,解题的关键是注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
三、解答题(本大题共5个小题,共48分)
14、(1)点A(﹣4,0),点B(0,2);(2)点P(﹣1,0)或(﹣7,0)或(7,0);(3)S△BFC=.
【解析】
(1)令x=0,y=0可求点A,点B坐标;
(2)分OM为边,OM为对角线两种情况讨论,由平行四边形的性质可求点P坐标;
(3)过点C作CG⊥AB,交x轴于点G,由题意可得点C坐标,即可求直线CG解析式为:y=−2x+,可得点G坐标,由锐角三角函数和角平分线的性质可得,可求点E坐标,用待定系数法可求直线CF解析式,可求点F坐标,即可求△BFC的面积.
【详解】
(1)当x=0时,y=2,
当y=0时,0=×x+2
∴x=﹣4
∴点A(﹣4,0),点B(0,2)
故答案为:(﹣4,0),(0,2)
(2)设点P(x,0)
若OM为边,则OM∥PN,OM=PN
∵点M的坐标为(0, ),
∴OM⊥x轴,OM=
∴PN⊥x轴,PN=
∴当y=时,则=x+2
∴x=﹣1
当y=﹣时,则﹣=x+2
∴x=﹣7
∴点P(﹣1,0),点P(﹣7,0)
若OM为对角线,则OM与PN互相平分,
∵点M的坐标为(0,),点O的坐标(0,0)
∴OM的中点坐标(0,)
∵点P(x,0),
∴点N(﹣x,)
∴=×(﹣x)+2
∴x=7
∴点P(7,0)
综上所述:点P(﹣1,0)或(﹣7,0)或(7,0)
(3)∵CD=,即点C纵坐标为,
∴=x+2
∴x=3
∴点C(3,)
如图,过点C作CG⊥AB,交x轴于点G,
∵CG⊥AB,
∴设直线CG解析式为:y=﹣2x+b
∴=﹣2×3+b
∴b=
∴直线CG解析式为:y=﹣2x+,
∴点G坐标为(,0)
∵点A(﹣4,0),点B(0,2)
∴OA=4,OB=2,AG=
∵tan∠CAG=
∴
∵∠ACF=45°,∠ACG=90°
∴∠ACF=∠FCG=45°
∴,且AE+EG=
∴AE=
∴OE=AE﹣AO=
∴点E坐标为(,0)
设直线CE解析式为:y=mx+n
∴
解得:m=3,n=
∴直线CE解析式为:y=3x
∴当x=0时,y=
∴点F(0,)
∴BF=
∴S△BFC=.
本题是一次函数综合题,考查了待定系数法求解析式,平行四边形的性质,锐角三角函数等知识,求出点E坐标是本题的关键.
15、(1); ;(2)当或时,反比例函数值大于一次函数的值;(3)当或时,一次函数值大于比例函数的值;(4).
【解析】
(1)把A的坐标代入反比例函数的解析式即可求出反比例函数的解析式,把B的坐标代入求出B的坐标,把A、B的坐标代入一次函数y1=kx+b即可求出函数的解析式;
(2)根据函数的图象和A、B的坐标即可得出答案;
(3)根据函数的图象和A、B的坐标即可得出答案;
(4)求出C的坐标,求出△AOC和△BOC的面积,即可求出答案.
【详解】
解:(1)∵把A(-2,1)代入
得:m=-2,
∴反比例函数的解析式是y=-,
∵B(1,n)代入反比例函数y=-
得:n=-2,
∴B的坐标是(1,-2),把A、B的坐标代入一次函数y1=kx+b得:
,
解得:k=-1,b=-1,
∴一次函数的解析式是y=-x-1;
(2)从图象可知:当反比例函数值大于一次函数的值时x的取值范围-2<x<0或x>1.
(3)从图象可知:当一次函数的值大于反比例函数的值时x的取值范围x<-2或0<x<1.
(4)设直线与x轴的交点为C,
∵把y=0代入一次函数的解析式是y=-x-1得:0=-x-1,
x=-1,
∴C(-1,0),
△AOB的面积S=SAOC+S△BOC=×|-1|×1+×|-1|×|-2|=.
本题考查了反比例函数、一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,三角形的面积等知识点的综合运用,主要考查学生的计算能力和观察图形的能力,用了数形结合思想,题目比较好.
16、,
【解析】
根据分式的混合运算法则把原式化简,把x的值代入计算即可
【详解】
解:原式
当时,
原式
本题考查整式的混合运算-化简求值,解题的关键是明确整式的混合运算的计算方法.
17、(1)证明见解析;(2)2.
【解析】
(1)考察角平分线定理的性质,及直角三角形全等的判断方法,“HL”;(2)利用全等得到线段AM=BE,AM=AF,利用正方形OECF,得到四边都相等,从而利用OE与BE、AF及AB的关系求出OE的长
【详解】
解:(1)过点O作OM⊥AB于点M
∵正方形OECF
∴OE=EC=CF=OF,OE⊥BC于E,OF⊥AC于F
∵BD平分∠ABC,OM⊥AB于M,OE⊥BC于E
∴OM=OE=OF
∵OM⊥AB于M, OE⊥BC于E
∴∠AMO=90°,∠AFO=90°
∵
∴Rt△AMO≌Rt△AFO
∴∠MA0=∠FAO
∴点O在∠BAC的平分线上
(2)∵Rt△ABC中,∠C=90°,AC=5,BC=12
∴AB=13
∴BE=BM,AM=AF
又BE=BC-CE,AF=AC-CF,而CE=CF=OE
∴BE=12-OE,AF=5-OE
∴BM+AM=AB
即BE+AF=13
12-OE+5-OE=13
解得OE=2
本题考查角平分线的判定,全等三角形的判定及性质,掌握HL定理的判定方法及全等三角形的性质是本题的解题关键.
18、m=-2,n=-2,B(1,-2).
【解析】
利用待定系数法即可解决问题,根据对称性或利用方程组确定点B坐标.
【详解】
解:∵直线y=mx与双曲线相交于A(-1,2),
∴m=-2,n=-2,
∵A,B关于原点对称,
∴B(1,-2).
本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据题意,A种票的张数为x张,则B种票(3x+8)张,C种为y张,由总数为100张,列出等式即可.
【详解】
解:由题可知,,
∴.
故答案为:.
本题考查了函数关系式,根据数量关系,找准函数关系式是解题的关键.
20、扩大5倍
【解析】
【分析】把分式中的x和y都扩大5倍,分别用5x和5y去代换原分式中的x和y,利用分式的基本性质化简即可.
【详解】把分式中的x,y都扩大5倍得:
=,
即分式的值扩大5倍,
故答案为:扩大5倍.
【点睛】本题考查了分式的基本性质,根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.
21、
【解析】
根据二次根式有意义 条件求解即可.
【详解】
根据题意知:2-a≥0,a-2≥0,
解得,a=2,
∴3×2+0+0=6.
故答案为:6.
此题主要考查了二次根式有意义的条件的应用,注意二次根式有意义的条件是被开方数是非负数.
22、
【解析】
利用完全平方公式的结构特征确定出k的值即可
【详解】
解:∵是完全平方式,
∴k=±30,
故答案为.
本题考查了完全平方式,熟练掌握完全平方的特点是解决本题的关键.
23、
【解析】
作HE⊥BD交BD于点E,在等腰直角三角形DEH中求出HE的长,由角平分线的性质可得HE=AH,即可求出AD的长.
【详解】
作HE⊥BD交BD于点E,
∵四边形ABCD是正方形,
∴∠BAD=90°, ∠ADB=45°,
∴△DEH是等腰直角三角形,
∴HE=DE,
∵HE2+DE2=DH2,
∴HE=,
∵∠ABH=∠DBH,∠BAD=90°, ∠BEH=90°,
∴HE=AH=,
∴.AD=.
故答案为.
本题考查了正方形的性质,角平分线的性质,勾股定理,等腰直角三角形的判定与性质,熟练掌握正方形的性质是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、乙船航行的方向为南偏东55°.
【解析】
试题分析:
由题意可知:在△ABC中,AC=60,AB=80,BC=100,由此可由“勾股定理逆定理”证得∠BAC=90°,结合∠EAD=180°和∠EAC=35°即可求得∠DAB的度数,从而得到乙船的航行方向.
试题解析:
由题意可知,在△ABC中,AC=30×2=60,AB=40×2=80,BC=100,
∴AC2=3600,AB2=6400,BC2=10000,
∴AC2+AB2=BC2,
∴∠CAB=90°,
又∵∠EAD=180°,∠EAC=35°,
∴∠DAB=90°-∠CAE=90°-35°=55°,
∴乙船航行的方向为南偏东55°.
点睛:本题的解题要点是:在△ABC中,由已知条件先求得AC和AB的长,再结合AC=100,即可用“勾股定理的逆定理”证得∠BAC=90°,这样即可求出∠DAB的度数,从而使问题得到解决.
25、(1)证明见解析(2)2
【解析】
(1)首先由平行四边形的性质可得AD∥BC,AB=CD;∠A=∠C,再由条件利用SAS定理可判定△ABE≌△CDF;(2)由(1)可知 ∠EBF=∠AEB由平行线的性质和角平分线得出∠AEB=∠ABE,即可得出结果.
解:(1)证明:法一:
∵四边形ABCD是平行四边形
∴AD∥BC,AD=BC,∠A=∠C,,
∵BE∥DF,
∴四边形BEDF是平行四边形,
∴DE=BF,
∴AD-DE=BC-BF,
即:AE=CF,
∴△ABE≌△CDF(SAS).
法二:∵BE//FD ∴∠EBF=∠DFC
∵AD//BC ∴∠EBF=∠AEB
∴∠AEB=∠DFC
在▱ABCD中,∵∠A=∠C,AB=CD
∴ △ABE≌△CDF
(2)由(1)可知 ∠EBF=∠AEB
又∵BE平分∠EBF
∴∠EBF=∠ABE
∴∠AEB=∠ABE
∴AE=AB=6
又∵BC=AD=8
∴DE=2
“点睛”本题考查了平行四边形的判定与性质、等腰三角形的判定;熟记平行四边形的性质,证出AE=AB是解决(2)的关键.
26、(1)见解析;(2)见解析,(-4,2)
【解析】
(1)利用网格特点和旋转的旋转画出点A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;
(2)延长OA到A2使A2A=OA,则点A2为点A的对应点,同样方法作出B、C的对应点B2,C2,从而得到△A2B2C2,然后写出A2的坐标.
【详解】
解:(1)如图,△A1B1C1为所求;
(2)如图,△A2B2C2为所作,点A2的坐标分别为(-4,2)
此题主要考查了旋转变换以及位似变换,正确利用旋转的性质得出对应点位置是解题关键.位似变换:利用以原点为位似中心的对应点的坐标之间的关系写出所求图形各顶点坐标,然后描点即可.
题号
一
二
三
四
五
总分
得分
物体的质量(kg)
0
1
2
3
4
5
弹簧的长度(cm)
10
12.5
15
17.5
20
22.5
成绩(分)
6
7
8
9
10
人数
3
2
3
1
1
2025届江苏省盐城市东台实验九年级数学第一学期开学学业质量监测试题【含答案】: 这是一份2025届江苏省盐城市东台实验九年级数学第一学期开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省盐城市东台市三仓镇区中学数学九年级第一学期开学监测试题【含答案】: 这是一份2024年江苏省盐城市东台市三仓镇区中学数学九年级第一学期开学监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省盐城市东台市第七联盟2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案: 这是一份江苏省盐城市东台市第七联盟2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了如图,AB是⊙O的弦,如图,反比例函数y=,由不能推出的比例式是,下列说法正确的是等内容,欢迎下载使用。