2025届江苏省宜兴市环科园联盟数学九上开学教学质量检测模拟试题【含答案】
展开
这是一份2025届江苏省宜兴市环科园联盟数学九上开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在一个不透明的袋子里放入8个红球,2个白球,小明随意地摸出一球,这个球是白球的概率为( )
A.B.C.D.
2、(4分)数据1、5、7、4、8的中位数是
A.4B.5C.6D.7
3、(4分)对于二次函数 y=(x-1)2+2 的图象,下列说法正确的是( )
A.开口向下B.顶点坐标是(1,2)C.对称轴是 x=-1D.有最大值是 2
4、(4分)在平面直角坐标系中,把△ABC先沿x轴翻折,再向右平移3个单位,得到△A1B1C1,把这两步操作规定为翻移变换,如图,已知等边三角形ABC的顶点B,C的坐标分别是(1,1),(3,1).把△ABC经过连续3次翻移变换得到△A3B3C3,则点A的对应点A3的坐标是( )
A.(5,﹣)B.(8,1+)C.(11,﹣1﹣)D.(14,1+)
5、(4分)下列根式中,与不是同类二次根式的是( )
A.B.C.D.
6、(4分)式子在实数范围内有意义,则x的取值范围( )
A.x≤2B.x<2C.x>2D.x≥2
7、(4分)下列调查中,适合普查的事件是( )
A.调查华为手机的使用寿命v
B.调查市九年级学生的心理健康情况
C.调查你班学生打网络游戏的情况
D.调查中央电视台《中国舆论场》的节目收视率
8、(4分)点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于( )
A.75°B.60°C.30°D.45°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离与时刻的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为________km.
10、(4分)如图,是矩形的边上一点,以为折痕翻折,使得点的对应点落在矩形内部点处,连接,若,,当是以为底的等腰三角形时, ___________.
11、(4分)如图,在平行四边形中,=5,=7,平分∠交边于点,则线段的长度为________.
12、(4分)已知,则的值等于________.
13、(4分)若是一元二次方程的一个根,则根的判别式与平方式的大小比较_____(填>,<或=).
三、解答题(本大题共5个小题,共48分)
14、(12分)已知关于x的函数y=(m+3)x|m+2|是正比例函数,求m的值.
15、(8分)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.
16、(8分)某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.
17、(10分)如图,在中,,,,AB的垂直平分线DE交AB于点D,交AC于点E,连接BE.
(1)求AD的长;
(2)求AE的长.
18、(10分)为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查.已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如图所示的统计图表.
根据图表中提供的信息,回答下列问题:
(1)在样本中,男生身高的中位数落在________组(填组别序号),女生身高在B组的人数有________人;
(2)在样本中,身高在150≤x<155之间的人数共有________人,身高人数最多的在________组(填组别序号);
(3)已知该校共有男生500人、女生480人,请估计身高在155≤x<165之间的学生有多少人
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)小明从A地出发匀速走到B地.小明经过(小时)后距离B地(千米)的函数图像如图所示.则A、B两地距离为_________千米.
20、(4分)已知一次函数y=mx+n(m≠0)与x轴的交点为(3,0),则方程mx+n=0(m≠0)的解是x=________.
21、(4分)A、B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回,返回途中与乙车相遇。如图是它们离A城的距离(km)与行驶时间(h)之间的函数图象。当它们行驶7(h)时,两车相遇,则乙车速度的速度为____________.
22、(4分)二项方程在实数范围内的解是_______________
23、(4分)一次函数y=﹣x,函数值y随x的增大而_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)解方程:x2﹣4x+3=1.
25、(10分)求知中学有一块四边形的空地ABCD,如下图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要250元,问学校需要投入多少资金买草皮?
26、(12分)随着“一带一路”的不断建设与深化,我国不少知名企业都积极拓展海外市场,参与投资经营.某著名手机公司在某国经销某种型号的手机,受该国政府经济政策与国民购买力双重影响,手机价格不断下降.分公司在该国某城市的一家手机销售门店,今年5月份的手机售价比去年同期每台降价1000元,若卖出同样多的手机,去年销售额可达10万元,今年销售额只有8万元.
(1)今年5月份每台手机售价多少元?
(2)为增加收入,分公司决定拓展产品线,增加经销某种新型笔记本电脑.已知手机每台成本为3500元,笔记本电脑每台成本为3000元,分公司预计用不少于4.8万元的成本资金少量试生产这两种产品共15台,但因资金所限不能超过5万元,共有几种生产方案?
(3)如果笔记本电脑每台售价3800元,现为打开笔记本电脑的销路,公司决定每售出1台笔记本电脑,就返还顾客现金a元,要使(2)中各方案获利最大,a的值应为多少?最大利润多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据题意,易得这个不透明的袋子里有10个球,已知其中有2个白球,根据概率的计算公式可得答案.
【详解】
解:这个不透明的袋子里有10个球,其中2个白球,
小明随意地摸出一球,是白球的概率为:;
故选:C.
用到的知识点为:概率=所求情况数与总情况数之比.关键是准确找出总情况数目与符合条件的情况数目.
2、B
【解析】
根据中位数的定义进行解答即可得出答案.
【详解】
将数据从小到大重新排列为:1、4、5、7、8,
则这组数据的中位数为5,
故选B.
本题考查了中位数的定义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
3、B
【解析】
根据二次函数的性质对各开口方向、顶点坐标、对称轴与最值进行判断即可.
【详解】
二次函数 y=(x-1)1+1 的图象的开口向上,对称轴为直线 x=1,顶点坐标为(1,1),函数有最小值 1.
故选B.
本题考查了二次函数的性质,掌握利用顶点式求抛物线的开口方向、顶点坐标、对称轴与最值是解决问题的关键.
4、C
【解析】
首先把△ABC先沿x轴翻折,再向右平移3个单位得到△A BC得到点A 的坐标为(2+3,-1-),同样得出A 的坐标为(2+3+3,1+),…由此得出A 的坐标为(2+3x5,-1-),进一步选择答案即可
【详解】
∵把△ABC先沿x轴翻折,再向右平移3个单位得到△A1B1C1得到点A1的坐标为(2+3,﹣1﹣),
同样得出A2的坐标为(2+3+3,1+),
…
A3的坐标为(2+3×3,﹣1﹣),即(11,﹣1﹣).
故选:C.
此题考查坐标与图形变化-对称,坐标与图形变化平移和规律型:点的坐标,解题关键在于找到规律
5、C
【解析】
各项化简后,利用同类二次根式定义判断即可.
【详解】
A、原式=3,不符合题意;
B、原式=,不符合题意;
C、原式=2,符合题意;
D、原式=,不符合题意,
故选:C.
本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.
6、C
【解析】
分析:
根据使“分式和二次根式有意义的条件”进行分析解答即可.
详解:
∵式子在实数范围内有意义,
∴ ,解得:.
故选C.
点睛:熟记:“使分式有意义的条件是:分母的值不能为0;使二次根式有意义的条件是:被开方数为非负数”是解答本题的关键.
7、C
【解析】试题解析:A、调查华为手机的使用寿命适合抽样调查;
B、调查市九年级学生的心理健康情况适合抽样调查;
C、调查你班学生打网络游戏的情况适合普查;
D、调查中央电视台《中国舆论场》的节目收视率适合抽样调查,
故选C.
8、D
【解析】
过E作AB的延长线AF的垂线,垂足为F,可得出∠F为直角,又四边形ABCD为正方形,可得出∠A为直角,进而得到一对角相等,由旋转可得∠DPE为直角,根据平角的定义得到一对角互余,在直角三角形ADP中,根据两锐角互余得到一对角互余,根据等角的余角相等可得出一对角相等,再由PD=PE,利用AAS可得出三角形ADP与三角形PEF全等,根据确定三角形的对应边相等可得出AD=PF,AP=EF,再由正方形的边长相等得到AD=AB,由AP+PB=PB+BF,得到AP=BF,等量代换可得出EF=BF,即三角形BEF为等腰直角三角形,可得出∠EBF为45°,再由∠CBF为直角,即可求出∠CBE的度数.
【详解】
过点E作EF⊥AF,交AB的延长线于点F,则∠F=90°,
∵四边形ABCD为正方形,
∴AD=AB,∠A=∠ABC=90°,
∴∠ADP+∠APD=90°,
由旋转可得:PD=PE,∠DPE=90°,
∴∠APD+∠EPF=90°,
∴∠ADP=∠EPF,
在△APD和△FEP中,
∵,
∴△APD≌△FEP(AAS),
∴AP=EF,AD=PF,
又∵AD=AB,
∴PF=AB,即AP+PB=PB+BF,
∴AP=BF,
∴BF=EF,又∠F=90°,
∴△BEF为等腰直角三角形,
∴∠EBF=45°,又∠CBF=90°,
则∠CBE=45°.
故选D.
此题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,以及等腰直角三角形的判定与性质,其中作出相应的辅助线是解本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;计算出乙车的平均速度为:300÷(9-6)=100(km/h),当乙车7:30时,乙车离A的距离为:100×1.5=150(km),得到点A(7.5,150)点B(5,0),设甲的函数解析式为:y=kt+b,把点A(7.5,150),B(5,0)代入解析式,求出甲的解析式,当t=9时,y=1×9-300=240,所以9点时,甲距离开A的距离为240km,则当乙车到达B城时,甲车离B城的距离为:300-240=1km.
【详解】
解:由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;
甲车10:00到达B城,乙车9:00到达B城;
乙车的平均速度为:300÷(9-6)=100(km/h),
当乙车7:30时,乙车离A的距离为:100×1.5=150(km),
∴点A(7.5,150),
由图可知点B(5,0),
设甲的函数解析式为:y=kt+b,
把点A(7.5,150),B(5,0)代入y=kt+b得:
,
解得:,
∴甲的函数解析式为:y=1t-300,
当t=9时,y=1×9-300=240,
∴9点时,甲距离开A的距离为240km,
∴则当乙车到达B城时,甲车离B城的距离为:300-240=1km.
故答案为:1.
本题考查了一次函数的应用,解决本题的关键是求甲的函数解析式,即可解答.
10、
【解析】
过点B'作B'F⊥AD,延长FB'交BC与点G,可证四边形ABGF是矩形,AF=BG=4,∠BGF=90°,由勾股定理可求B'F=3,可得B'G=2,由勾股定理可求BE的长.
【详解】
解:如图,过点B'作B'F⊥AD,延长FB'交BC与点G,
∵四边形ABCD是矩形
∴AD=BC=8,∠DAB=∠ABC=90°
∵AB'=B'D,B'F⊥AD
∴AF=FD=4,
∵∠DAB=∠ABC=90°,B'F⊥AD
∴四边形ABGF是矩形
∴AF=BG=4,∠BGF=90°
∵将△ABE以AE为折痕翻折,
∴BE=B'E,AB=AB'=5
在Rt△AB'F中,
∴B'G=2
在Rt△B'EG中,B'E2=EG2+B'G2,
∴BE2=(4-BE)2+4
∴BE=
故答案为:.
本题考查了翻折变换,矩形的判定与性质,等腰三角形的性质,勾股定理,求B'G的长是本题的关键.
11、1
【解析】
根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得DE的长度.
【详解】
∵四边形ABCD为平行四边形,
∴AE∥BC,AD=BC=7cm,
∴∠AEB=∠EBC,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,
∴AE=AB=5cm,
∴DE=AD-AE=7-5=1cm
故答案为:1.
本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.
12、3
【解析】
将通分后,再取倒数可得结果;或将分子分母同除,代入条件即可得结果.
【详解】
方法一:
∵
∴
方法二:
故答案为3.
本题考查分式的求值,从条件入手或从问题入手,都可以得出结果,将分式变形是解题的关键.
13、=
【解析】
首先把(2ax0+b)2展开,然后把x0代入方程ax2+bx+c=0中得ax02+bx0=-c,再代入前面的展开式中即可得到△与M的关系.
【详解】
把x0代入方程ax2+bx+c=0中得ax02+bx0=-c,
∵(2ax0+b)2=4a2x02+4abx0+b2,
∴(2ax0+b)2=4a(ax02+bx0)+b2=-4ac+b2=△,
∴M=△.
故答案为=.
本题是一元二次方程的根与根的判别式的结合试题,既利用了方程的根的定义,也利用了完全平方公式,有一定的难度.
三、解答题(本大题共5个小题,共48分)
14、m=-1
【解析】
根据一次函数的定义得到方程和不等式,再进行求解即可.
【详解】
解:若关于x的函数y=(m+3)x|m+2|是正比例函数,
需满足m+3≠0且|m+2|=1,
解得m=-1
故m的值为-1.
15、2+
【解析】
试题分析:先求出x2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.
试题解析:x2=(2﹣)2=7﹣4,
则原式=(7+4)(7﹣4)+(2+)(2﹣)+
=49﹣48+1+
=2+.
16、见解析
【解析】
由三个娱乐项目所处位置到售票中心的距离相等,可得售票中心是海盗船、摩天轮、碰碰车三个娱乐场组成三角形的三边的垂直平分线的交点.
【详解】
如图,①连接AB,AC,
②分别作线段AB,AC的垂直平分线,两垂直平分线相较于点P,
则P即为售票中心.
此题考查了线段垂直平分线的性质.此题难度不大,注意掌握线段垂直平分线的作法.
17、 (1)5;(2)
【解析】
(1)直接利用勾股定理得出AB的长,即可解决问题.
(2)用未知数表示出EC,BE的长,再利用勾股定理得出EC的长,进而得出答案.
【详解】
(1)如图所示:
∵在中,,,,
∴,
∵DE垂直平分AB,
∴.
(2)∵DE垂直平分AB,
∴,
设,则,
故,
解得:,
∴.
此题主要考查了勾股定理以及线段垂直平分线的性质,正确得出EC的长是解题关键.
18、(1)D;12;(2)16;C;(3)身高在155≤x<165之间的学生约有541人.
【解析】
从频数分布直方图可得到男生的总人数,则中位数是第20、21个人身高的平均数,女生与男生人数相同,由此可得到题(1)的答案;
结合上步所得以及各组的人数可求出身高在150≤x<155的总人数和身高最多的组别,从而解决(2);对于(3),可根据两幅统计图得到男女生身高在155≤x<165之间的学生的百分率,从而使问题得以解决.
【详解】
解:(1)因为在样本中,共有男生2+4+8+12+14=40(人),
所以中位数是第20、21个人身高的平均数,而2+4+12=18人,
所以男生身高的中位数位于D组,
女生身高在B组的人数有40×(1-30%-20%-15%-5%)=12(人).
(2)在样本中,身高在150≤x<155之间的人数共有4+12=16(人),身高人数最多的在C组;
(3)500× +480×(30%+15%)=541(人),
故估计身高在155≤x<165之间的学生约有541人.
本题主要考查从统计图表中获取信息,中等难度,解题的关键是要读懂统计图.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、20
【解析】
根据图象可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,据此解答即可.
【详解】
解:根据题意可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,
所以A、B两地距离为:4×5=20(千米).
故答案为:20
本题考查了一次函数的应用,观察函数图象结合数量关系,列式计算是解题的关键.
20、1
【解析】
直接根据函数图象与x轴的交点进行解答即可.
【详解】
∵一次函数y=mx+n与x轴的交点为(1,0),
∴当mx+n=0时,x=1.
故答案为:1.
本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
21、75千米/小时
【解析】
甲返程的速度为:600÷(14−6)=75km/h,设已车的速度为x,由题意得:600=7x+75,即可求解.
【详解】
解:甲返程的速度为:600÷(14−6)=75km/h,
设乙车的速度为x,
由题意得:600=7x+75,
解得:x=75,
故答案为75千米/小时.
本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.
22、x=-1
【解析】
由2x1+54=0,得x1=-27,解出x值即可.
【详解】
由2x1+54=0,得x1=-27,
∴x=-1,
故答案为:x=-1.
本题考查了立方根,正确理解立方根的意义是解题的关键.
23、减小
【解析】
根据其图象沿横轴的正方向的增减趋势,判断其增减性.
【详解】
解:因为一次函数y=中,k=
所以函数值y随x的增大而减小.
故答案是:减小.
考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
二、解答题(本大题共3个小题,共30分)
24、x1=1,x2=2.
【解析】
试题分析:本题考查了一元二次方程的解法,用十字相乘法分解因式求解即可.
解:x2﹣4x+2=1
(x﹣1)(x﹣2)=1
x﹣1=1,x﹣2=1
x1=1,x2=2.
25、学校需要投入9000元资金买草皮.
【解析】
仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.
【详解】
连接BD,
在Rt△ABD中,BD2=AB2+AD2=32+42=52,
在△CBD中,CD2=132,BC2=122,
而122+52=132,
即BC2+BD2=CD2,
∴∠DBC=90°,
S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC,
=×4×3+×12×5=1.
所以需费用1×250=9000(元),
答:学校需要投入9000元资金买草皮.
本题考查了勾股定理的应用,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.
26、 (1)今年5月份每台手机售价4000元;(2)5种生产方案;(3)a的值应为2元,最大利润为7500元.
【解析】
(1)设今年5月份手机每台售价为m元,则去年同期每台售价为(m+100)元,根据数量=总价÷单价结合今年5月份与去年同期的销售数量相同,即可得出关于m的分式方程,解之经检验后即可得出结论;
(2)设生产手机x台,则生产笔记本电脑(15-x)台,根据总价=单价×数量结合总价不少于4.8万元不能超过高于5万元,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,由该范围内整数的个数即可得出方案的种数;
(3)设总获利为w元,根据利润=销售收入-成本,即可得出w关于x的一次函数关系式,由w的值与x无关,即可得出a-2=0,解之即可求出a值.
【详解】
(1)设今年5月份手机每台售价为m元,则去年同期每台售价为(m+100)元,
根据题意得:,
解得:m=4000,
经检验,m=4000是原方程的根且符合题意.
答:今年5月份手机每台售价为4000元.
(2)设生产手机x台,则生产笔记本电脑(15-x)台,
根据题意得:,
解得:6≤x≤1,
∴x的正整数解为6、7、8、9、1.
答:共有5种生产方案.
(3)设总获利为w元,
根据题意得:w=(4000-3500)x+(3800-20-a)(15-x)=(a-2)x+12000-15a.
∵w的值与x值无关,
∴a-2=0,即a=2.
当a=2时,最大利润为12000-15×2=7500元.
本题考查了分式方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据数量关系,找出w关于x的函数关系式.
题号
一
二
三
四
五
总分
得分
组别
身高(cm)
A
x
相关试卷
这是一份2024年江苏省无锡市宜兴市宜城环科园联盟九上数学开学综合测试试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省宜兴市宜城环科园教联盟2023-2024学年数学九上期末质量检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份江苏省宜兴市环科园联盟2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案,共7页。试卷主要包含了下列四对图形中,是相似图形的是等内容,欢迎下载使用。