搜索
    上传资料 赚现金
    英语朗读宝

    2025届江西省吉安永新县联考数学九上开学考试模拟试题【含答案】

    2025届江西省吉安永新县联考数学九上开学考试模拟试题【含答案】第1页
    2025届江西省吉安永新县联考数学九上开学考试模拟试题【含答案】第2页
    2025届江西省吉安永新县联考数学九上开学考试模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届江西省吉安永新县联考数学九上开学考试模拟试题【含答案】

    展开

    这是一份2025届江西省吉安永新县联考数学九上开学考试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)将直线向上平移1个单位长度,得到的一次函数解析式为
    A.B.C.D.
    2、(4分)我国古代用勾、股和弦分别表示直角三角形的两条直角边和斜边,如图由四个全等的直角三角形和一个小正方形拼成一个大正方形,数学家邹元治利用该图证明了勾股定理,现已知大正方形面积为9,小正方形面积为5,则每个直角三角形中勾与股的差的平方为( )
    A.4B.3C.2D.1
    3、(4分)下列命题正确的个数是( )
    (1)若x2+kx+25是一个完全平方式,则k的值等于10;(2)正六边形的每个内角都等于相邻外角的2倍;(3)一组对边平行,一组对角相等的四边形是平行四边形;(4)顺次连结四边形的四边中点所得的四边形是平行四边形
    A.1B.2C.3D.4
    4、(4分)等于( )
    A.2B.0C.D.-2019
    5、(4分)下列定理中没有逆定理的是( )
    A.等腰三角形的两底角相等B.平行四边形的对角线互相平分
    C.角平分线上的点到角两边的距离相等D.全等三角形的对应角相等
    6、(4分)用配方法解方程x2﹣2x﹣1=0,原方程应变形为( )
    A.(x﹣1)2=2 B.(x+1)2=2 C.(x﹣1)2=1 D.(x+1)2=1
    7、(4分)如图,把两块全等的的直角三角板、重叠在一起,,中点为,斜边中点为,固定不动,然后把围绕下面哪个点旋转一定角度可以使得旋转后的三角形与原三角形正好合成一个矩形(三角板厚度不计)( )
    A.顶点B.顶点C.中点D.中点
    8、(4分)下列由左到右的变形,属于因式分解的是( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,小芳和爸爸正在散步,爸爸身高1.8m,他在地面上的影长为2.1m.若小芳比他爸爸矮0.3m,则她的影长为________m.
    10、(4分)如图,已知一次函数y=kx+b经过A(2,0),B(0,﹣1),当y>0时,则x的取值范围是_____.
    11、(4分)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在边AB上的点D处,已知MN∥AB,MC=6,NC=2,则四边形MABN的面积是___________.
    12、(4分)若m=2,则的值是_________________.
    13、(4分)如图,在平面直角坐标系中,点A为,点C是第一象限上一点,以OA,OC为邻边作▱OABC,反比例函数的图象经过点C和AB的中点D,反比例函数图象经过点B,则的值为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知:在矩形ABCD中,点F为AD中点,点E为AB边上一点,连接CE、EF、CF,EF平分∠AEC.
    (1)如图1,求证:CF⊥EF;
    (2)如图2,延长CE、DA交于点K, 过点F作FG∥AB交CE于点G若,点H为FG上一点,连接CH,若∠CHG=∠BCE, 求证:CH=FK;
    (3)如图3, 过点H作HN⊥CH交AB于点N,若EN=11,FH-GH=1,求GK长.
    15、(8分)解不等式组:,并把解集在数轴上表示出来。
    16、(8分)在平行四边形中,和的平分线交于的延长线交于,是猜想:
    (1)与的位置关系?
    (2)在的什么位置上?并证明你的猜想.
    (3)若,则点到距离是多少?
    17、(10分)2019年4月23日是第24个世界读书日.为迎接第24个世界读书日的到来,某校举办读书分享大赛活动:现有甲、乙两位同学的各项成绩如下表所示:若“推荐语”“读书心得”“读书讲座”的成绩按确定综合成绩,则甲、乙二人谁能获胜?请通过计算说明理由
    18、(10分)某校九年级有1200名学生,在体育考试前随机抽取部分学生进行跳绳测试,根据测试成绩制作了下面两个统计图.请根据相关信息,解答下列问题:
    (Ⅰ)本次参加跳绳测试的学生人数为___________,图①中的值为___________;
    (Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;
    (Ⅲ)根据样本数据,估计该校九年级跳绳测试中得3分的学生约有多少人?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=10,BC=16,则EF的长为___________.
    20、(4分)若关于x的一元二次方程有两个不相等的实数根,则m的取值范围________
    21、(4分)某数学学习小组发现:通过连多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角钱共有3条,那么该多边形的内角和是______度.
    22、(4分)如图,为的中位线,平分,交于,,则的长为_______。
    23、(4分)如图,在矩形ABCD中,AC为对角线,点E为BC上一点,连接AE,若∠CAD=2∠BAE,CD=CE=9,则AE的长为_____________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知向量,(如图),请用向量的加法的平行四边形法则作向量(不写作法,画出图形)
    25、(10分)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,的三个顶点都在格点上(每个小方格的顶点叫格点).
    (1)画出关于点的中心对称的;
    (2)画出绕点顺时针旋转后的;
    (3)求(2)中线段扫过的面积.
    26、(12分)计算:
    (1) (2)
    (3) (4)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据函数解析式“上加下减”的原则进行解答即可.
    【详解】
    解:由“上加下减”的原则可知,
    将直线向上平移1个单位长度,得到的一次函数解析式为.
    故选:A.
    本题考查一次函数的图象与几何变换,熟知函数解析式“上加下减”的原则是解答此题的关键.
    2、D
    【解析】
    设勾为x,股为y,根据面积求出xy=2,根据勾股定理求出x2+y2=5,根据完全平方公式求出x﹣y即可.
    【详解】
    设勾为x,股为y(x<y),
    ∵大正方形面积为9,小正方形面积为5,
    ∴4×xy+5=9,
    ∴xy=2,
    ∵x2+y2=5,
    ∴y﹣x====1,
    (x﹣y)2=1,
    故选:D.
    本题考查了勾股定理和完全平方公式,能根据已知和勾股定理得出算式xy=2和x2+y2=5是解此题的关键.
    3、C
    【解析】
    根据完全平方式、正六边形、平行四边形的判定判断即可
    【详解】
    (1)若x2+kx+25是一个完全平方式,则k的值等于±10,是假命题;
    (2)正六边形的每个内角都等于相邻外角的2倍,是真命题;
    (3)一组对边平行,一组对角相等的四边形是平行四边形,是真命题;
    (4)顺次连结四边形的四边中点所得的四边形是平行四边形,是真命题;
    故选C
    此题考查完全平方式、正六边形、平行四边形的判定,掌握其性质是解题关键
    4、C
    【解析】
    根据0指数幂和负整数指数幂的运算法则计算即可得答案.
    【详解】
    =1×=,
    故选:C.
    本题考查0指数幂及负整数指数幂,任何不为0的数的0次幂都等于1,熟练掌握运算法则是解题关键.
    5、D
    【解析】
    先写出各选项的逆命题,判断出其真假即可解答.
    【详解】
    解:A、其逆命题是“一个三角形的两个底角相等,则这个三角形是等腰三角形”,正确,所以有逆定理;
    B、其逆命题是“对角线互相平分的四边形是平行四边形”,正确,所以有逆定理;
    C、其逆命题是“到角两边的距离相等的点在角平分线上”,正确,所以有逆定理;
    D、其逆命题是“两个三角形中,三组角分别对应相等,则这两个三角形全等”,错误,所以没有逆定理;
    故选:D.
    本题考查的是命题与定理的区别,正确的命题叫定理.
    6、A
    【解析】分析:先把常数项移到方程右侧,再把方程两边加上1,然后把方程左边利用完全公式表示即可.
    详解:x1﹣1x=1,
    x1﹣1x +1=1,
    (x﹣1)1=1.
    故选A.
    点睛:本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)1=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
    7、D
    【解析】
    运用旋转的知识逐项排除,即可完成解答.
    【详解】
    A,绕顶点A旋转可以得到等腰三角形,故A错误;
    B,绕顶点B旋转得不到矩形,故B错误;
    C,绕中点P旋转可以得到等腰三角形,故C错误;
    D,绕中点Q旋转可以得到等腰三角形,故D正确;
    因此答案为D.
    本题主要考查了旋转,解题的关键在于具有丰富的空间想象能力.
    8、C
    【解析】
    根据因式分解的意义,可得答案.
    【详解】
    A. 是整式的乘法,故A错误;
    B. 没把一个多项式转化成几个整式积的形式,故B错误;
    C. 把一个多项式转化成几个整式积的形式,故C正确;
    D没把一个多项式转化成几个整式积的形式,故D错误.
    故答案选:C.
    本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.2.
    【解析】
    根据实物与影子的比相等可得小芳的影长.
    【详解】
    ∵爸爸身高1.8m,小芳比他爸爸矮0.3m,
    ∴小芳高1.5m,
    设小芳的影长为xm,
    ∴1.5:x=1.8:2.1,
    解得x=1.2,
    小芳的影长为1.2m.
    本题考查了平行投影的知识,解题的关键是理解阳光下实物的影长与影子的比相等.
    10、x>1
    【解析】
    利用待定系数法可得直线AB的解析式为y=x−1,依据当y>0时,x−1>0,即可得到x的取值范围.
    【详解】
    解:由A(1,0),B(0,﹣1),可得直线AB的解析式为y=x﹣1,
    ∴当y>0时,x﹣1>0,
    解得x>1,
    故答案为:x>1.
    本题主要考查了一次函数与不等式之间的联系,直线上任意一点的坐标都满足函数关系式y=kx+b,解题关键是求出直线解析式.
    11、18
    【解析】
    如图,连接CD,与MN交于点E,根据折叠的性质可知CD⊥MN,CE=DE.再根据相似三角形的判定可知△MNC∽△ABC,再根据相似三角形的面积之比等于相似比的平方.由图可知四边形ABNM的面积等于△ABC的面积减去△MNC的面积.
    【详解】
    解:连接CD,交MN于点E.
    ∵△ABC沿直线MN翻折后,顶点C恰好落在边AB上的点D处,
    ∴CD⊥MN,CE=DE.
    ∵MN∥AB,
    ∴△MNC∽△ABC, CD⊥AB,
    ∴===4.
    ∵=MCCN=62=6,
    ∴=24,
    ∴四边形ACNM=-
    =24-6
    =18
    故答案是18.
    本题考查了折叠的性质、相似三角形的性质和判定,根据题意正确作出辅助线是解题的关键.
    12、0
    【解析】
    先把所求的式子因式分解,再代入m的值进行求解.
    【详解】
    原式=(m-2)2=0
    此题主要考查因式分解的应用,解题的关键是根据所求的式子特点进行因式分解,从而进行简便计算.
    13、
    【解析】
    过C作CE⊥x轴于E,过D作DF⊥x轴于F,易得△COE∽△DAF,设C(a,b),则利用相似三角形的性质可得C(4,b),B(10,b),进而得到.
    【详解】
    如图,过C作CE⊥x轴于E,过D作DF⊥x轴于F,则∠OEC=∠AFD=90°,
    又,

    ∽,
    又是AB的中点,,

    设,则,,
    ,,

    反比例函数的图象经过点C和AB的中点D,

    解得,

    又,


    故答案为.
    本题考查了反比例函数图象上点的坐标特征以及平行四边形的性质,解题的关键是掌握:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)证明见解析;(2)证明见解析;(3)CN=25.
    【解析】
    (1)如图,延长EF交CD延长线于点Q,先证明CQ=CE,再证明△FQD≌△FEA,根据全等三角形的对应边相等可得EF=FQ,再根据等腰三角形的性质即可得CF⊥EF;
    (2)分别过点F、H作FM⊥CE ,HP⊥CD,垂足分别为M、P,证明四边形DFHP是矩形,继而证明△HPC≌△FMK,根据全等三角形的性质即可得CH=FK;
    (3)连接CN,延长HG交CN于点T,设∠DCF=α,则∠GCF=α, 先证明得到FG=CG=GE,∠CGT=2,再由FG是BC的中垂线,可得BG = CG, ∠CGT=∠FGK=∠BGT=2,再证明HN∥BG,得到四边形HGBN是平行四边形,继而证明△HNC≌△KGF,推导可得出HT=CT=TN ,由FH-HG=1,所以设GH=m,则BN=m,FH=m+1,CE=2FG=4m+2,继而根据,可得关于m的方程,解方程求得m的值即可求得答案.
    【详解】
    (1)如图,延长EF交CD延长线于点Q,
    ∵矩形ABCD,AB∥CD,
    ∴∠AEF=∠CQE, ∠A=∠QDF,
    又∵EF 平分∠AEC ,
    ∴∠AEF=∠CEF,
    ∴∠CEF=∠CQE,
    ∴CQ=CE,
    ∵点F是AD中点,
    ∴AF=DF,
    ∴△FQD≌△FEA,
    ∴EF=FQ,
    又∵CE=CQ,
    ∴CF⊥EF;
    (2)分别过点F、H作FM⊥CE ,HP⊥CD,垂足分别为M、P,
    ∵CQ=CE ,CF⊥EF,
    ∴∠DCF=∠FCE,
    又∵FD⊥CD,
    ∴FM=DF,
    ∵FG//AB,∴∠DFH=∠DAC=90°,
    ∴∠DFH=∠FDP=∠DPH=90°,
    ∴四边形DFHP是矩形,
    ∴DF=HP,
    ∴FM= DF=HP,
    ∵∠CHG=∠BCE,AD∥BC,FG∥CD,
    ∴∠K=∠BCE=∠CHG=∠DCH,
    又∵∠FMK=∠HPC=90°,
    ∴△HPC≌△FMK,
    ∴CH=FK;
    (3)连接CN,延长HG交CN于点T,设∠DCF=α,则∠GCF=α,
    ∵FG∥CD ,∴∠DCF=∠CFG,
    ∴∠FCG=∠CFG,∴FG=CG,
    ∵CF⊥EF,
    ∴∠FEG+∠FCG=90°,∠CFG+∠GFE=90°,
    ∴∠GFE=∠FEG,∴GF=FE,
    ∴FG=CG=GE,∠CGT=2,
    ∵FG是BC的中垂线,
    ∴BG = CG, ∠CGT=∠FGK=∠BGT=2,
    ∵∠CHG=∠BCE=90°-2,∠CHN=90°,
    ∴∠GHN=∠FGK=∠BGT=2,
    ∴HN∥BG,
    ∴四边形HGBN是平行四边形,
    ∴HG=BN,HN=BG = CG =FG,
    ∴△HNC≌△KGF,
    ∴GK=CN,∠HNC=∠FGK=∠NHT=2,
    ∴HT=CT=TN ,
    ∵FH-HG=1,∴设GH=m,则BN=m,FH=m+1,CE=2FG=4m+2,
    ∵GT=,∴CN=2HT=11+2m,
    ∵,

    ∴(舍去),,
    ∴CN=GK=2HT=25.
    本题考查的是四边形综合题,涉及了等腰三角形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质,矩形的性质与判定,三角形外角的性质等,综合性较强,难度较大,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
    15、,解集在数轴上表示见解析
    【解析】
    试题分析:先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可.
    试题解析:
    由①得:
    由②得:
    ∴不等式组的解集为:
    解集在数轴上表示为:
    16、(1);(2)在的中点处,见解析;(3)点到距离是.
    【解析】
    (1)根据平行线的性质得到,根据角平分线的定义得到,,于是得到,即可得到结论;
    (2)根据平行线的性质得到,等量代换得到,得到根据等腰三角形的性质即可得到结论;
    (3)根据(1)(2)可得,再设点到的距离是,建立等式,即可得到.
    【详解】
    解:(1),
    理由:

    分别平分



    (2)在的中点处,
    理由:







    在的中点处;
    (3)由(1)(2)得,
    在中,,
    设点到的距离是,则有

    .
    本题考查了平行四边形的性质,角平分线的定义,等腰三角形的性质,正确识别图形是解题的关键.
    17、甲获胜;理由见解析.
    【解析】
    根据加权平均数的计算公式列出算式,进行计算即可.
    【详解】
    甲获胜;
    甲的加权平均成绩为(分,
    乙的加权平均成绩为(分,
    ∵,
    ∴甲获胜.
    此题考查了加权平均数的概念及应用,用到的知识点是加权平均数的计算公式,解题的关键是根据公式列出算式.
    18、(I)50,1;(Ⅱ)3.7,4,4(Ⅲ)120人
    【解析】
    (I)把条形图中的各组人数相加即可求得参加跳绳测试的学生人数,利用百分比的意义求得m即可;
    (Ⅱ)利用加权平均数公式求得平均数,然后利用众数、中位数定义求解;
    (Ⅲ)利用总人数乘以对应的百分比即可求解.
    【详解】
    解:(Ⅰ)本次参加跳绳的学生人数是1+5+25+1=50(人),
    m=10×=1.
    故答案是:50,1;
    (Ⅱ)平均数是:(1×2+5×3+25×4+1×5)=3.7(分),
    ∵在这组数据中,4出现了25次,出现次数最多;
    ∴这组样本数据的众数是:4;
    ∵将这组样本数据自小到大的顺序排列,其中处于最中间位置的两个数都是4,有
    ∴这组样本数据的中位数是:4;
    (Ⅲ)∵在50名学生中跳绳测试得3分的学生人数比例为1%,
    ∴估计该校该校九年级跳绳测试中得3分的学生有1200×1%=120(人).
    答:该校九年级跳绳测试中得3分的学生有120人.
    本题考查的是条形统计图的综合运用,还考查了加权平均数、中位数和众数以及用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.
    【详解】
    ∵DE为△ABC的中位线,∠AFB=90°,
    ∴DE=BC,DF=AB,
    ∵BC=16,AB=10,
    ∴DE=×16=8,DF=×10=5,
    ∴EF=DE-DF=8-5=1,
    故答案为:1.
    本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.
    20、
    【解析】
    根据∆>0列式求解即可.
    【详解】
    由题意得
    4-8m>0,
    ∴.
    故答案为:.
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆

    相关试卷

    2024年江西省吉安市永新县九上数学开学学业水平测试试题【含答案】:

    这是一份2024年江西省吉安市永新县九上数学开学学业水平测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江西省吉安吉州区五校联考九上数学开学监测试题【含答案】:

    这是一份2024-2025学年江西省吉安吉州区五校联考九上数学开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年江西省吉安永新县联考九年级数学第一学期期末经典试题含答案:

    这是一份2023-2024学年江西省吉安永新县联考九年级数学第一学期期末经典试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,在平面直角坐标系中,点P等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map