2025届江西省景德镇市乐平市九年级数学第一学期开学学业质量监测模拟试题【含答案】
展开这是一份2025届江西省景德镇市乐平市九年级数学第一学期开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,的周长为,对角线、相交于点,点是的中点,,则的周长为( )
A.B.C.D.
2、(4分)用长为28米的铝材制成一个矩形窗框,使它的面积为25平方米.若设它的一边长为x米,根据题意列出关于x的方程为( )
A.x(28﹣x)=25B.2x(14﹣x)=25
C.x(14﹣x)=25D.
3、(4分)如图,正方形的边长为3,将正方形折叠,使点落在边上的点处,点落在点处, 折痕为。若,则的长是
A.1B.C.D.2
4、(4分)如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是( )
A.14B.13C.14D.14
5、(4分)已知一元二次方程x2-2x-1=0的两根分别为x1,x2,则的值为( )
A.2B.-1
C.-D.-2
6、(4分)如图,在正方形中,为边上一点,将沿折叠至处, 与交于点,若,则的大小为( )
A.B.C.D.
7、(4分)晨光中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐三项体育成绩(百分制)依次95分、90分、86分,则小桐这学期的体育成绩是( )
A.88B.89分C.90分D.91分
8、(4分)在平面直角坐标系中,点(4,﹣3)关于y轴对称的点的坐标是( )
A.(﹣4,﹣3)B.(4,3)C.(﹣4,3)D.(4,﹣3)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在菱形中,,点是边的中点,是对角线上的一个动点,若,则的最小值是_____.
10、(4分)在函数中,自变量的取值范围是__________.
11、(4分)有一张一个角为30°,最小边长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是 .
12、(4分)化简b 0 _______.
13、(4分)如图,中,,若动点从开始,按C→A→B→C的路径运动(回到点C就停止),且速度为每秒,则P运动________秒时, 为等腰三角形.(提示:直角三角形中,当斜边和一条直角边长分别为和时,另一条直角边为)
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,城气象台测得台风中心在城正西方向的处,以每小时的速度向南偏东的方向移动,距台风中心的范围内是受台风影响的区域.
(1)求城与台风中心之间的最小距离;(2)求城受台风影响的时间有多长?
15、(8分)如图,AD=CB,AB=CD,求证:△ACB≌△CAD
16、(8分)计算:
(1);
(2).
17、(10分)计算:(- )2×( )-2+(-2019)0
18、(10分)如图,在△ABC中,∠ACB=90°,AC=BC,点E是BC上一点(不与点B,C重合),点M是AE上一点(不与点A,E重合),连接并延长CM交AB于点G,将线段CM绕点C按顺时针方向旋转90°,得到线段CN,射线BN分别交AE的延长线和GC的延长线于D,F.
(1)求证:△ACM≌△BCN;
(2)求∠BDA的度数;
(3)若∠EAC=15°,∠ACM=60°,AC=+1,求线段AM的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分) “五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是_____.
20、(4分)已知一次函数的图象过点,那么此一次函数的解析式为__________.
21、(4分)若多项式x2+mx+是一个多项式的平方,则m的值为_____
22、(4分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=6cm,GH=8cm,则边AB的长是__________
23、(4分)已知,则的值为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知点A及第一象限的动点,且,设△OPA的面积为S.
(1)求S关于的函数解析式,并写出的取值范围;
(2)画出函数S的图象,并求其与正比例函数的图象的交点坐标;
(3)当S=12时,求P点坐标.
25、(10分)定义:点关于原点的对称点为,以为边作等边,则称点为的“等边对称点”;
(1)若,求点的“等边对称点”的坐标;
(2)若点是双曲线上动点,当点的“等边对称点”点在第四象限时,
①如图(1),请问点是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由;
②如图(2),已知点,,点是线段上的动点,点在轴上,若以、、、这四个点为顶点的四边形是平行四边形时,求点的纵坐标的取值范围.
26、(12分)如图,已知点E在平行四边形ABCD的边AB上,设=,再用图中的线段作向量.
(1)写出平行的向量 ;
(2)试用向量表示向量;
(3)求作:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
利用平行四边形的性质,三角形中位线定理即可解决问题
【详解】
解:平行四边形的周长为18,
,
,,
∴
,
,
,
的周长为,
故选.
本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.
2、C
【解析】
由它的一边长为x,表示出另一边长,根据矩形的面积公式列出方程即可得.
【详解】
设它的一边长为x米,则另一边长为=14﹣x(米),
根据题意,得:x(14﹣x)=25,
故选C.
本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程.
3、B
【解析】
设DF为x,根据折叠的性质,利用Rt△A’DF中勾股定理即可求解.
【详解】
∵A’C=2,正方形的边长为3,∴A’D=1,
设DF=x,∴AF=3-x,
∵折叠,∴A’F=AF=3-x,
在Rt△A’DF中,A’F2=DF2+A’D2,
即(3-x)2=x2+12,
解得x=
故选B.
此题主要考查勾股定理的应用,解题的关键是熟知正方形的性质及勾股定理的应用.
4、D
【解析】
24和10为两条直角边长时,求出小正方形的边长14,即可利用勾股定理得出EF的长.
【详解】
解:∵AE=10,BE=24,即24和10为两条直角边长时,
小正方形的边长=24-10=14,
∴EF=.
故选D.
本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.
5、D
【解析】
由题意得,
,,
∴=.
故选D.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:, .
6、B
【解析】
首先利用正方形性质得出∠B=∠BCD=∠BAD=90°,从而得知∠ACB=∠BAC=45°,然后进一步根据三角形外角性质可以求出∠BEF度数,再结合折叠性质即可得出∠BAE度数,最后进一步求解即可.
【详解】
∵四边形ABCD为正方形,
∴∠B=∠BCD=∠BAD=90°,
∴∠ACB=∠BAC=45°,
∵∠EFC=69°,
∴∠BEF=∠EFC+∠ACB=114°,
由折叠性质可得:∠BEA=∠BEF=57°,
∴∠BAE=90°−57°=33°,
∴∠EAC=45°−33°=12°,
故选:B.
本题主要考查了正方形性质与三角形外角性质的综合运用,熟练掌握相关概念是解题关键.
7、B
【解析】
根据加权平均数的意义计算即可.
【详解】
解:小桐这学期的体育成绩:
95×20%+90×30%+86×50%=89(分),
故选:B.
本题考查了加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则(x1w1+x2w2+…+xnwn)÷(w1+w2+…+wn)叫做这n个数的加权平均数.
8、A
【解析】
试题解析:点(4,﹣3)关于y轴的对称点的坐标是(﹣4,﹣3),
故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
找出B点关于AC的对称点D,连接DE交AC于P,则DE就是PB+PE的最小值,求出即可.
【详解】
连接DE交AC于P,连接DB,
由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,
∴PE+PB=PE+PD=DE,
即DE就是PE+PB的最小值,
∵∠ABC=120°,
∴∠BAD=60°,
∵AD=AB,
∴△ABD是等边三角形,
∵AE=BE,
∴DE⊥AB(等腰三角形三线合一的性质).
在Rt△ADE中,DE==.
∴PB+PE的最小值为.
故答案为.
本题主要考查轴对称-最短路线问题,菱形的性质,勾股定理等知识点,确定P点的位置是解答本题的关键.
10、x≠2
【解析】
根据分式有意义的条件进行求解即可.
【详解】
由题意得,2x-4≠0,
解得:x≠2,
故答案为:x≠2.
本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
11、或1.
【解析】
试题分析:此题主要考查了图形的剪拼,关键是根据画出图形,要考虑全面,不要漏解. 根据三角函数可以计算出BC=8,AC=4,再根据中位线的性质可得CD=AD=,CF=BF=4,DF=2,然后拼图,出现两种情况,一种是拼成一个矩形,另一种拼成一个平行四边形,进而算出周长即可.
解:由题意可得:AB=4,
∵∠C=30°,
∴BC=8,AC=4,
∵图中所示的中位线剪开,
∴CD=AD=2,CF=BF=4,DF=2,
如图1所示:拼成一个矩形,矩形周长为:2+2+4+2+2=8+4;
如图2所示,可以拼成一个平行四边形,周长为:4+4+4+4=1,
故答案为8+4或1.
考点:1.图形的剪拼;2.三角形中位线定理.
12、
【解析】
式子的分子和分母都乘以 即可得出 ,根据b是负数去掉绝对值符号即可.
【详解】
∵b<0,
∴=.
故答案为: .
此题考查分母有理化,解题关键在于掌握运算法则
13、3,5.4,6,6.5
【解析】
作CD⊥AB于D,根据勾股定理可求CD,BD的长度,分BP=BC,CP=BP,BC=CP三种情况讨论,可得t的值
【详解】
点在上,时,秒;
点在上,时,过点作交于点,
点在上,时,
④点在上,时,过点作交于点,
为的中位线
,
本题考查了勾股定理,等腰三角形的性质,关键是利用分类思想解决问题.
三、解答题(本大题共5个小题,共48分)
14、(1)城与台风中心之间的最小距离是;(2)城遭受这次台风影响的时间为小时.
【解析】
(1)城与台风中心之间的最小距离即为点A到OB的垂线段的长,作,根据直角三角形中所对的直角边等于斜边的一半求解即可;
(2)设上点,千米,则还有一点,有千米,则在DG范围内,城遭受这次台风影响,所以求出DG长,除以台风移动的速度即为时间.
【详解】
解:作
在中,
,则
答:城与台风中心之间的最小距离是
设上点,千米,则还有一点,有
千米
是等腰三角形,
是的垂直平分线,
在中,千米,千米
由勾股定理得,(千米)
千米,遭受台风影响的时间是:(小时)
答:城遭受这次台风影响个时间为小时
本题考查了含直角三角形的性质、等腰三角形的性质及勾股定理,正确理解题意是解题的关键.
15、见解析
【解析】
利用SSS即可证明.
【详解】
证明:在△ACB与△CAD中
∴△ACB≌△CAD(SSS)
本题考查的是全等三角形的判定,能够根据SSS证明三角形全等是解题的关键.
16、(1)3; (2).
【解析】
(1)先去括号,再合并同类二次根式即可;
(2)先化简,再合并同类二次根式即可.
【详解】
(1)原式=
=;
(2)原式=
=.
本题考查了二次根式的加减运算,应先把各个二次根式化成最简二次根式,然后再合并同类二次根式即可. 同类二次根式的合并方法是把系数相加减,被开方式和根号不变.
17、2
【解析】
分别计算乘方,负指数幂,零次幂,然后再按运算顺序进行计算即可.
【详解】
原式= ×4+1
=1+1=2.
考查了实数运算,解题关键是熟记其运算法则.
18、(1)见解析;(2)∠BDA=90°;(3)AM=.
【解析】
(1)根据题意可知∠ACM=∠BCN,再利用SAS即可证明
(2)根据(1)可求出∠ACE=∠BDE=90°,即可解答
(3)作MH⊥AC交AC于H.在AC上取一点,使得AQ=MQ,设EH=a.可知AQ=QM=2a,QH= a,再求出a的值,利用勾股定理即可解答
【详解】
(1)∵∠ACB=90°,∠MCN=90°,
∴∠ACM=∠BCN,
在△MAC和△NBC中
,
∴△MAC≌△NBC(SAS).
(2)∵△MAC≌△NBC,
∴∠NBC=∠MAC
∵∠AEC=∠BED,
∴∠ACE=∠BDE=90°,
∴∠BDA=90°.
(3)作MH⊥AC交AC于H.在AC上取一点,使得AQ=MQ,设EH=a.
∵AQ=QM,
∴∠QAE=∠AMQ=15°,
∴∠EQH=30°,
∴AQ=QM=2a,QH= a,
∵∠ECH=60°,
∴CH= a,
∵AC=+1,
∴2a+a+a=+1,
∴a= ,
∵AM= =( + )a=.
此题考查了三角形全等的性质和判定,勾股定理,解题关键在于先利用SAS判定三角形全等
一、填空题(本大题共5个小题,每小题4分,共20分)
19、6<v<2或v=4.2
【解析】
利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.
【详解】
解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).
将(0,1)、(30,300)代入y=kx+b,得:
,解得:,
∴此种情况下,y关于x的函数关系式为y=2x+1;
将(0,1)、(70,420)代入y=kx+b,得:
,解得:,
∴此种情况下,y关于x的函数关系式为y=6x+1;
将(0,1)、(50,300)代入y=kx+b,得:
,解得:,
∴此种情况下,y关于x的函数关系式为y=4.2x+1.
观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<2或v=4.2.
故答案为6<v<2或v=4.2
本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.
20、
【解析】
用待定系数法即可得到答案.
【详解】
解:把代入得,解得,
所以一次函数解析式为.
故答案为
本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.
21、±.
【解析】
根据完全平方公式的结构特征即可求出答案.
【详解】
解:∵x2+mx+=x2+mx+()2,
∴mx=±2××x,
解得m=±.
故答案为±.
本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.
22、.
【解析】
利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得GE的长,进而求出HM,AB即为边2HM的长.
【详解】
解:∵∠HEM=∠HEB,∠GEF=∠CEF,∴∠HEF=∠HEM+∠GEF=∠BEG+∠GEC=×180°=90°,
同理可得:∠EHG=∠HGF=∠EFG=90°,
∴四边形EFGH为矩形,
∵EH=6cm,GH=8cm,
∴GE=10
由折叠可知,HM⊥GE,AH=HM,BH=HM,
∵,
∴AB=AH+BH=2HM=2×=.
故答案为.
此题主要考查了翻折变换的性质以及勾股定理等知识,得出四边形EFGH为矩形是解题关键.
23、
【解析】
根据二次根式有意义的条件可求得x的值,继而可求得y值,代入所求式子即可求得答案.
【详解】
由题意得,
解得:x=4,
所以y=3,
所以=,
故答案为:.
本题考查了二次根式有意义的条件,熟练掌握是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)S=-4x+40 (0<x<10);(2)(,);(3)P(7,3)
【解析】
(1)根据△OAP的面积=OA×y÷2列出函数解析式,及点P(x,y)在第一象限内求出自变量的取值范围.
(2)根据S=-4x+40画出函数图像,并与正比例函数S=2x联立方程组,即可求出交点坐标.
(3)将S=12代入(1)求出的解析式中即可.
【详解】
解:(1)依题意有S=×8×(10-x)=-4x+40,
∵点P(x,y)在第一象限内,
∴x>0,y=10-x>0,
解得:0<x<10,
故关于x的函数解析式为:S=-4x+40 (0<x<10);
(2)∵解析式为S=-4x+40(0<x<10);
∴函数图象经过点(10,0)(0,40)(但不包括这两点的线段).
所画图象如下:
令,
解得,
所以交点坐标为(,);
(3)将S=12代入S=-4x+40,
得:12=-4x+40,
解得:x=7,
故点P(7,3).
本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.
25、(1)或;(2)①;②或
【解析】
(1)根据P点坐标得出P'的坐标,可求PP'=4;设C(m,n),有PC=P'C=24,通过解方程即可得出结论;
(2)①设P(c,),得出P'的坐标,利用连点间的距离公式可求的长,设C(s,t),有,然后通过解方程可得,再根据消元c即可得xy=-6;
②分AG为平行四边形的边和AG为平行四边形的对角线两种情况进行分类讨论.
【详解】
解:(1)∵P(1,),
∴P'(-1,-),
∴PP'=4,
设C(m,n),
∴等边△PP′C,
∴PC=P'C=4,
解得n=或-,
∴m=-1或m=1.
如图1,观察点C位于第四象限,则C(,-1).即点P的“等边对称点”的坐标是(,-1).
(2)①设,∴,
∴,
设,
,
∴,
∴,
∴,
∴,
∴或,
∴点在第四象限,,
∴,
令,
∴,即;
②已知,,则直线为,设点,设点,,即,,,构成平行四边形,点在线段上,;
当为对角线时,平行四边形对角坐标之和相等;
,,,即;
当为边时,平行四边形,
,,,即;
当为边时,平行四边形,
,,,而点在第三象限,,即此时点不存在;
综上,或.
本题考查反比例函数的图象及性质,等边三角形的性质,新定义;理解题意,利用等边三角形的性质结合勾股定理求点C的坐标是关键,数形结合解题是求yc范围的关键.
26、 (1);(2);(3)见解析.
【解析】
根据平面向量的知识,再利用三角形法即可求解.
【详解】
在此处键入公式。
(1)与是平行向量;
(2)=+=﹣+=﹣
=+=﹣+=﹣(﹣)+=-++
(3)∵+=+=
如图所示,
该题主要考查了平面向量的知识,注意掌握三角形法的应用.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2025届河南省郑州市数学九年级第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届甘肃省临泽县数学九年级第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江西省上饶县九年级数学第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。