还剩3页未读,
继续阅读
泰安市泰山实验中学鲁教版2024-2025七年级上册数学第三章《勾股定理》易错题综合练习和答案
展开
这是一份泰安市泰山实验中学鲁教版2024-2025七年级上册数学第三章《勾股定理》易错题综合练习和答案,共6页。
第三章《勾股定理》易错题综合练习一、选择题1.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为( )A.21 B.15 C.6 D.以上答案都不对2.在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为( )A.84 B.24 C.24或84 D.42或843.直角三角形的两边长分别是6,8,则第三边的长为( )A.10 B.2 C.10或2 D.无法确定4.若一个直角三角形的三边长分别为3,4,x,则满足此三角形的x值为( )A.5 B. C.5或 D.没有5.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=( )A.1 B. C. D.26.已知Rt△ABC中的三边长为a、b、c,若a=8,b=15,那么c2等于( )A.161 B.289 C.225 D.161或2897.如图,以直角三角形三边为边长作正方形,其中两个以直角边为边长的正方形面积分别为225和400,则正方形A的面积是( )A.175 B.575 C.625 D.7008.以下各组数为边长的三角形中,能组成直角三角形的是( )A.3、4、6 B.9、12、15 C.5、12、14 D.10、16、259.若a、b、c为三角形三边,则下列各项中不能构成直角三角形的是( )A.a=7,b=24,c=25 B.a=5,b=13,c=12C.a=1,b=2,c=3 D.a=30,b=40,c=5010.如图所示,是一个圆柱体,ABCD是它的一个横截面,AB=,BC=3,一只蚂蚁,要从A点爬行到C点,那么,最近的路程长为( )A.7 B. C. D.511.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为( )A.169 B.25 C.19 D.1312. 直角三角形有一条直角边长为13,另外两条边长为连续自然数,则周长为( )A.182 B.183 C.184 D.18513.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出( )A.2个 B.3个 C.4个 D.6个14.如图,直角三角形三边上的半圆面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是( )A.Sl+S2>S3 B.Sl+S2<S3 C.S1+S2=S3 D.S12+S22=S3215. 直角三角形中两个直角边为a,b,斜边为c,斜边上的高为h,那么c+h,a+b,h为三边构成的三角形是( )A.直角三角形 B.锐角三角形 C.等边三角形 D.钝角三角形16. 若△ABC的三边长分别为a,b,c,且满足(a-b)•(a2+b2-c2)=0,则△ABC是( )A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等腰三角形或直角三角形17. 一个等腰三角形的腰长为5,底边上的高为4,这个等腰三角形的周长是( )A.12 B.13 C.16 D.1818. 在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若∠A:∠B:∠C=1:2:3.则a:b:c=( )A.1::2 B.:1:2 C.1:1:2 D.1:2:3二、填空题19.在△ABC中,AB边上的中线CD=3,AB=6,BC+AC=8,则△ABC的面积为 .20.如图,有两个全等的直角三角形,它们的边长分别为3和4,把这两个直角三角形拼成一个三角形或一个四边形,在这些图形中,周长最小值是 .21. 设a>b,如果a+b,a-b是三角形较小的两条边,当第三边等于 时,这个三角形为直角三角形.22.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树 米之外才是安全的.23.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用 秒钟.24. 若a,b,c分别是△ABC的三条边长,且a2-6a+b2-10c+c2=8b-50,则这个三角形的形状是 .参考答案选择题1.D 2.C 3.C 4.C 5.D 6.D 7.C 8.B 9.C 10.D 11.B 12.A 13.D 14.C 15.A 16.D 17.C 18.A 二、填空题19.7 20.14 21. 22.4 23.2.5 24.直角三角形.
第三章《勾股定理》易错题综合练习一、选择题1.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为( )A.21 B.15 C.6 D.以上答案都不对2.在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为( )A.84 B.24 C.24或84 D.42或843.直角三角形的两边长分别是6,8,则第三边的长为( )A.10 B.2 C.10或2 D.无法确定4.若一个直角三角形的三边长分别为3,4,x,则满足此三角形的x值为( )A.5 B. C.5或 D.没有5.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=( )A.1 B. C. D.26.已知Rt△ABC中的三边长为a、b、c,若a=8,b=15,那么c2等于( )A.161 B.289 C.225 D.161或2897.如图,以直角三角形三边为边长作正方形,其中两个以直角边为边长的正方形面积分别为225和400,则正方形A的面积是( )A.175 B.575 C.625 D.7008.以下各组数为边长的三角形中,能组成直角三角形的是( )A.3、4、6 B.9、12、15 C.5、12、14 D.10、16、259.若a、b、c为三角形三边,则下列各项中不能构成直角三角形的是( )A.a=7,b=24,c=25 B.a=5,b=13,c=12C.a=1,b=2,c=3 D.a=30,b=40,c=5010.如图所示,是一个圆柱体,ABCD是它的一个横截面,AB=,BC=3,一只蚂蚁,要从A点爬行到C点,那么,最近的路程长为( )A.7 B. C. D.511.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为( )A.169 B.25 C.19 D.1312. 直角三角形有一条直角边长为13,另外两条边长为连续自然数,则周长为( )A.182 B.183 C.184 D.18513.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出( )A.2个 B.3个 C.4个 D.6个14.如图,直角三角形三边上的半圆面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是( )A.Sl+S2>S3 B.Sl+S2<S3 C.S1+S2=S3 D.S12+S22=S3215. 直角三角形中两个直角边为a,b,斜边为c,斜边上的高为h,那么c+h,a+b,h为三边构成的三角形是( )A.直角三角形 B.锐角三角形 C.等边三角形 D.钝角三角形16. 若△ABC的三边长分别为a,b,c,且满足(a-b)•(a2+b2-c2)=0,则△ABC是( )A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等腰三角形或直角三角形17. 一个等腰三角形的腰长为5,底边上的高为4,这个等腰三角形的周长是( )A.12 B.13 C.16 D.1818. 在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若∠A:∠B:∠C=1:2:3.则a:b:c=( )A.1::2 B.:1:2 C.1:1:2 D.1:2:3二、填空题19.在△ABC中,AB边上的中线CD=3,AB=6,BC+AC=8,则△ABC的面积为 .20.如图,有两个全等的直角三角形,它们的边长分别为3和4,把这两个直角三角形拼成一个三角形或一个四边形,在这些图形中,周长最小值是 .21. 设a>b,如果a+b,a-b是三角形较小的两条边,当第三边等于 时,这个三角形为直角三角形.22.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树 米之外才是安全的.23.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用 秒钟.24. 若a,b,c分别是△ABC的三条边长,且a2-6a+b2-10c+c2=8b-50,则这个三角形的形状是 .参考答案选择题1.D 2.C 3.C 4.C 5.D 6.D 7.C 8.B 9.C 10.D 11.B 12.A 13.D 14.C 15.A 16.D 17.C 18.A 二、填空题19.7 20.14 21. 22.4 23.2.5 24.直角三角形.
相关资料
更多