2025届江西省上饶县联考数学九上开学经典试题【含答案】
展开
这是一份2025届江西省上饶县联考数学九上开学经典试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在中,下列结论错误的是()
A.B.C.D.
2、(4分)在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是( )
A.5B.7C.9D.11
3、(4分)的值等于
A.3B.C.D.
4、(4分)八年级(6)班一同学感冒发烧住院洽疗,护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是( )
A.列表法B.图象法
C.解析式法D.以上三种方法均可
5、(4分)下列图形既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
6、(4分)某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )
A.甲B.乙丙C.甲乙D.甲丙
7、(4分)要使式子有意义,则x的值可以是( )
A.2B.0C.1D.9
8、(4分)已知,,是一次函数图象上不同的两个点,若,则的取值范围是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点P在第二象限内,且点P在反比例函数图象上,PA⊥x轴于点A,若S△PAO的面积为3,则k的值为 .
10、(4分)若点位于第二象限,则x的取值范围是______.
11、(4分)计算:(﹣)2=_____.
12、(4分)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车相遇后都停下来休息,快车休息2个小时后,以原速的继续向甲行驶,慢车休息3小时后,接到紧急任务,以原速的返回甲地,结果快车比慢车早2.25小时到达甲地,两车之间的距离S(千米)与慢车出发的时间t(小时)的函数图象如图所示,则当快车到达甲地时,慢车距乙地______千米.
13、(4分)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是 分.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知向量,(如图),请用向量的加法的平行四边形法则作向量(不写作法,画出图形)
15、(8分)化简:.
16、(8分)已知,矩形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标示为(1,0),点B的坐标为(1,8) .
(1)直接写出点C的坐标为:C( ____ ,_____);
(2)已知直线AC与双曲线y= (m≠0)在第一象限内有一点交点Q为(5,n),
①求m及n的值;
②若动点P从A点出发,沿折线AO→OC→CB的路径以每秒2个单位长度的速度运动,到达B处停止,△APQ的面积为S,当t取何值时,S=1.
17、(10分)求不等式组的解集,并把解集在数轴上表示出来
18、(10分)如图,已知正方形ABCD中,以BF为底向正方形外侧作等腰直角三角形BEF,连接DF,取DF的中点G,连接EG,CG.
(1)如图1,当点A与点F重合时,猜想EG与CG的数量关系为 ,EG与CG的位置关系为 ,请证明你的结论.
(2)如图2,当点F在AB上(不与点A重合)时,(1)中结论是否仍然成立?请说明理由;如图3,点F在AB的左侧时,(1)中的结论是否仍然成立?直接做出判断,不必说明理由.
(3)在图2中,若BC=4,BF=3,连接EC,求的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在矩形中,,,点,分别在边,上,以线段为折痕,将矩形折叠,使其点与点恰好重合并铺平,则线段_____.
20、(4分)若二次根式有意义,则x的取值范围是 ▲ .
21、(4分)如图△ABC中,∠BAC=90°,将△ABC绕点A按顺时针方向旋转一定角度得到△ADE,点B的对应点D恰好落在BC边上,若AC=4,∠B=60∘,则CD的长为____
22、(4分)将正比例函数y=3x的图象向下平移11个单位长度后,所得函数图象的解析式为______.
23、(4分)已知反比例函数y=(k为常数,k≠2)的图像有一支在第二象限,那么k的取值范围是_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:×+÷﹣|﹣2|
25、(10分)如图,在中,,点D,E分别是边AB,AC的中点,连接DE,DC,过点A作交DE的延长线于点F,连接CF.
(1)求证:;
(2)求证,四边形BCFD是平行四边形;
(3)若,,求四边形ADCF的面积.
26、(12分)在某校组织的初中数学应用能力竞赛中,每班参加比赛的人数相同,成绩分为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将八年级的一班和二班的成绩整理并绘制成如下的统计图,二班D级共有4人.
请你根据以上提供的信息解答下列问题:
(1)求此竞赛中一班共有多少人参加比赛,并补全条形统计图.
(2)扇形统计图中A级对应的圆心角度数是 .
(3)此次竞赛中二班在C级以上(包括C级)的人数为 .
(4)请你将表格补充完成:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据平行四边形的对边平行和平行线的性质即可一一判断.
【详解】
∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠BCD,(平行四边形的对边相等,对角相等)故B、C正确.
∵四边形ABCD是平行四边形,
∴AB∥BC,
∠1=∠2,故A正确,
故只有∠1=∠3错误,
故选:D.
此题考查平行四边形的性质,解题关键在于掌握平行四边形的对边相等;平行四边形的对角相等;平行四边形的对边平行.
2、B
【解析】
试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=1.故选B.
3、A
【解析】
.故选A.
4、B
【解析】
列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.
【详解】
解:护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是图象法,有利于判断体温的变化情况,
故选:B.
本题主要考查了函数的表示方法,图象法直观地反映函数值随自变量的变化而变化的规律.
5、D
【解析】
直接利用轴对称图形和中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,但不是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、既是中心对称图形也是轴对称图形,故此选项正确.
故选:D.
此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.
6、C
【解析】
利用平均数的定义分别进行计算成绩,然后判断谁优秀.
【详解】
解:由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,
乙的总评成绩=98×50%+90×20%+95×30%=95.5,
丙的总评成绩=80×50%+88×20%+90×30%=84.6,
∴甲乙的学期总评成绩是优秀.
故选:C.
本题考查加权平均数,掌握加权成绩等于各项成绩乘以不同的权重的和是解题的关键.
7、D
【解析】
式子为二次根式,根据二次根式的性质,被开方数大于等于0,可得x-50,解不等式就可得到答案.
【详解】
∵式子有意义,
∴x-50,
∴x5,
观察个选项,可以发现x的值可以是9.
故选D.
本题考查二次根式有意义的条件.
8、D
【解析】
根据可得出与异号,进而得出,解之即可得出结论.
【详解】
,
与异号,
,解得:.
故选:.
本题考查了一次函数的性质,熟练掌握“当时,随的增大而减小”是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-6
【解析】
由△PAO的面积为3可得=3,再结合图象经过的是第二象限,从而可以确定k值;
【详解】
解:∵S△PAO=3,
∴=3,
∴|k|=6,
∵图象经过第二象限,
∴k
相关试卷
这是一份2025届江西省上饶市上饶县九上数学开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届河南省信阳固始县联考九上数学开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江西省全南县数学九上开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。