2025届辽宁省辽阳市第九中学数学九年级第一学期开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题中是真命题的是( )
①4的平方根是2
②有两边和一角相等的两个三角形全等
③连结任意四边形各边中点的四边形是平行四边形
④所有的直角都相等
A.0个B.1个C.2个D.3个
2、(4分)在一个直角三角形中,已知两直角边分别为6cm,8cm,则下列结论不正确的是( )
A.斜边长为10cmB.周长为25cm
C.面积为24cm2D.斜边上的中线长为5cm
3、(4分)一次函数y=kx﹣b,当k<0,b<0时的图象大致位置是( )
A.B.C.D.
4、(4分)如图,在长方形中,,在上存在一点,沿直线把折叠,使点恰好落在边上的点处,若的面积为,那么折叠的的面积为( )
A.30B.20C.D.
5、(4分)下列各式从左到右的变形中,是因式分解的为( )
A.x(a-b)=ax-bxB.x2-1=(x-1)(x+1)
C.x2-1+y2=(x-1)(x+1)+y2D.ax+bx+c=x(a+b)+c
6、(4分)下列等式成立的是( )
A.(-3)-2=-9B.(-3)-2=
C.(a12)2=a14D.0.0000000618=6.18×10-7
7、(4分)下列各式中,一定是二次根式的有( )个.
A.2B.3C.4D.5
8、(4分)如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是( )
A.5≤k≤20B.8≤k≤20C.5≤k≤8D.9≤k≤20
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一组数据5、7、7、x中位数与平均数相等,则x的值为________.
10、(4分)如图,四边形中,,,且,顺次连接四边形各边中点,得到四边形,再顺次连接四边形各边中点得到四边形,如此进行下去,得到四边形,则四边形的面积是________.
11、(4分)当x=1时,分式无意义;当x=2时,分式的值为0,则a+b=_____.
12、(4分)如图,矩形ABCD中,,,把矩形ABCD绕点A顺时针旋转,当点D落在射线CB上的点P处时,那么线段DP的长度等于_________.
13、(4分)乐乐参加了学校广播站招聘小记者的三项素质测试,成绩(百分制)如下:采访写作70分,计算机操作60分,创意设计80分.如果采访写作、计算机操作和创意设计的成绩按5:2:3计算,那么他的素质测试的最终成绩为__________________分.
三、解答题(本大题共5个小题,共48分)
14、(12分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.
(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;
(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;
(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.
15、(8分)如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动.
(1)问几秒后△PBQ的面积等于8cm2?
(2)是否存在这样的时刻,使=8cm2,试说明理由.
16、(8分)如图所示,□ABCD中,E、F分别是AB、CD上的点,AE=CF,M、N分别是DE、BF的中点.求证:四边形ENFM是平行四边形.
17、(10分) (1)因式分解:
(2)解不等式组:并把解集在数轴上表示出来.
18、(10分) “五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.
[来
根据以上信息,解答下列问题:
(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;
(2)请你帮助小明计算并选择哪个出游方案合算.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知菱形ABCD的两条对角线长分别为12和16,则这个菱形ABCD的面积S=_____.
20、(4分)分解因式:=________.
21、(4分)已知矩形的长a=,宽b=,则这个矩形的面积是_____.
22、(4分)已知菱形ABCD的对角线AC=10,BD=24,则菱形ABCD的面积为__________。
23、(4分)点P(﹣3,4)到x轴和y轴的距离分别是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知直线y=kx+b经过点A(﹣20,1)、B(10,20)两点.
(1)求直线y=kx+b的表达式;
(2)当x取何值时,y>1.
25、(10分)我们定义:在四边形中,一条边上的两个角称为邻角.如果一条边上的邻角相等,且这条边对边上的邻角也相等,则把这样的四边形叫做“完美四边形”.
初步运用:在“平行四边形、矩形和菱形”这三种特殊的四边形中,一定是“完美四边形”的是______;
问题探究:在完美四边形中,,,,,求该完美四边形的周长与面积;
26、(12分)某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知1个篮球和2个足球共需116元;2个篮球和3个足球共需204元
求购买1个篮球和1个足球各需多少元?
若学校准备购进篮球和足球共40个,并且总费用不超过1800元,则篮球最多可购买多少个?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据平方根的概念、全等三角形的判定定理、中点四边形的性质判断即可.
【详解】
解:4的平方根是±2,①是假命题;
有两边及其夹角相等的两个三角形全等,②是假命题;
连结任意四边形各边中点的四边形是平行四边形,③是真命题;
所有的直角都相等,④是真命题.
故选C.
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
2、B
【解析】
试题解析:∵在一个直角三角形中,已知两直角边分别为6cm,8cm,
∴直角三角形的面积=×6×8=24cm2,故选项C不符合题意;
∴斜边 故选项A不符合题意;
∴斜边上的中线长为5cm,故选项D不符合题意;
∵三边长分别为6cm,8cm,10cm,
∴三角形的周长=24cm,故选项B符合题意,
故选B.
点睛:直角三角形斜边的中线等于斜边的一半.
3、A
【解析】
先根据k<0,b<0判断出一次函数y=kx-b的图象经过的象限,进而可得出结论.
【详解】
解:∵一次函数y=kx-b,k<0,b<0,
∴-b>0,
∴函数图象经过一二四象限,
故选:A.
本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时的图象在一、二、四象限是解答此题的关键.
4、D
【解析】
由三角形面积公式可求BF的长,由勾股定理可求AF的长,即可求CF的长,由勾股定理可求DE的长,即可求△ADE的面积.
【详解】
解:∵四边形ABCD是矩形
∴AB=CD=6cm,BC=AD,
∵,
即:
∴BF=8(cm)
在Rt△ABF中,(cm)
∵折叠后与重合,
∴AD=AF=10cm,DE=EF,
∴BC=10cm,
∴FC=BC-BF=10-8=2(cm),
在Rt△EFC中,,
∴,解之得:,
∴(cm2),
故选:D.
本题考查了翻折变换,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.
5、B
【解析】
根据因式分解的的定义即可完成本题。
【详解】
解:A选项没有写成因式积的形式,故A错;
B选项写成因式积的形式,故B正确;
C选项没有写成因式积的形式,故C错;
D选项没有写成因式积的形式,故D错;
故答案为B.
本题考查了因式分解,准确的理解因式分解的定义是解答本题的关键。
6、B
【解析】
∵,
∴A、C、D均不成立,成立的是B.
故选B.
7、B
【解析】
试题解析:根据二次根式定义:一般地,我们把形如(a≥0)的式子叫做二次根式知:,,,是二次根式,共3个.
故选B.
8、A
【解析】
若反比例函数与三角形交于A(4,5),则k=20;
若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故.
故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、5或2
【解析】
试题分析:根据平均数与中位数的定义就可以解决.中位数可能是7或1.
解:当x≥7时,中位数与平均数相等,则得到:(7+7+5+x)=7,解得x=2;
当x≤5时:(7+7+5+x)=1,解得:x=5;
当5<x<7时:(7+7+x+5)÷4=(x+7)÷2,解得x=5,舍去.
所以x的值为5或2.
故填5或2.
考点:中位数;算术平均数.
10、
【解析】
根据四边形的面积与四边形的面积间的数量关系来求其面积.
【详解】
解:∵四边形中,,,且
由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,
四边形的面积是.
故答案为:.
本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.
11、3
【解析】
先根据分式无意义的条件可求出的值,再根据分式值为0的条件可求出b的值,最后将求出的a,b代入计算即可.
【详解】
因为当时,分式无意义,
所以,
解得:,
因为当时,分式的值为零,
所以,
解得:,
所以
故答案为:3.
本题主要考查分式无意义和分式值为0的条件,解决本题的关键是要熟练掌握分式无意义和分式值为0的条件.
12、
【解析】
【分析】画图,分两种情况:点P在B的右侧或左侧.根据旋转和矩形性质,运用勾股定理,分别求出BP和PC,便可求出PD.
【详解】(1)如图,当P在B的右侧时,由旋转和矩形性质得:
AP=AD=5,AB=CD=3,
在直角三角形ABP中,BP=,
所以,PC=BC-BP=5-4=1,
在直角三角形PDC中,PD=,
(2)如图,当点P在B的左侧时,由旋转和矩形性质得:
AP=AD=5,AB=CD=3,
在直角三角形APB中,PB=,
所以,PC=BC+PB=5+4=9,
在在直角三角形PDC中,PD=,
所以,PD的长度为
故答案为
【点睛】本题考核知识点:矩形,旋转,勾股定理. 解题关键点:由旋转和矩形性质得到边边相等,由勾股定理求边长.
13、71
【解析】
根据加权平均数的定义计算可得.
【详解】
他的素质测试的最终成绩为=71(分),
故答案为:71分.
本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.
三、解答题(本大题共5个小题,共48分)
14、(1)y1=36x;(2)当0≤x≤10时,y2=42x,当x>10时,y2=33.6x+84;(3)若购买35个书包,选A,B品牌都一样,若购买35个以上书包,选B品牌划算,若购买书包个数超过10个但小于35个,选A品牌划算
【解析】
(1)直接利用购买A品牌书包按原价的九折销售,进而得出函数关系式;
(2)分别利用当0≤x≤10时,当x>10时,分别得出函数关系式;
(3)分别利用①当y1=y2时,②当y1>y2时,③当y1<y2时,求出答案.
【详解】
解:(1)由题意可得:y1=36x;
(2)当0≤x≤10时,y2=42x;
当x>10时,y2=42×10+42×0.8(x-10)=33.6x+84;
(3)若x>10,则y2=33.6x+84,
①当y1=y2时,36x=33.6x+84,
解得:x=35;
②当y1>y2时,36x>33.6x+84,
解得:x>35;
③当y1<y2时,36x<33.6x+84,
解得:x<35;
∵x>10,
∴10<x<35,
答:若购买35个书包,选A,B品牌都一样;若购买35个以上书包,选B品牌划算;
若购买书包个数超过10个但小于35个,选A品牌划算.
此题主要考查了一次函数的应用,正确得出函数关系式进而分类讨论是解题关键.
15、(2)2秒或4秒;(2)不存在.
【解析】
试题分析:(2)表示出PB,QB的长,利用△PBQ的面积等于8cm2列式求值即可;
(2)设出发秒x时△DPQ的面积等于8平方厘米,由三角形的面积公式列出方程,再由根的判别式判断方程是否有解即可.
试题解析:解:(2)设x秒后△PBQ的面积等于8cm2.
则AP=x,QB=2x,∴PB=6﹣x,∴×(6﹣x)2x=8,解得,.
答:2秒或4秒后△PBQ的面积等于8cm2;
(2)设出发秒x时△DPQ的面积等于8cm2.∵S矩形ABCD﹣S△APD﹣S△BPQ﹣S△CDQ=S△DPQ,∴22×6﹣×22x﹣×2x(6﹣x)﹣×6×(22﹣2x)=8,化简整理得:,∵△=36﹣4×28=﹣76<0,∴原方程无解,∴不存在这样的时刻,使S△PDQ=8cm2.
考点:2.矩形的性质;2.勾股定理;3.动点型.
16、见解析
【解析】
整体分析:
用一组对边平行且相等的四边形是平行四边形证明四边形DEBF是平行四边形,结合条件得到EM=FN即可求证.
证明:∵四边形ABCD是平行四边形,
∴AB//CD.
∵AE=CF,
∴FD=EB,
∴四边形DEBF是平行四边形,
∴DE//FB,DE=FB.
∵M、N分别是DE、BF的中点,
∴EM=FN.
∵DE//FB,
∴四边形MENF是平行四边形.
17、 (1);(2) .
【解析】
(1)先提取y,再根据完全平方公式即可得到答案;
(2)先分别求出不等式组中两个不等式的解,再将答案表示的数轴上.
【详解】
(1)因式分解:
(2)解不等式组:
解:解不等式①,得
解不等式②,得
在同一数轴上表示不等式①②的解集,如图.
∴原不等式组的解集为:
本题考查因式分解、解不等式组和数轴,解题的关键是掌握因式分解、解不等式组和数轴.
18、(1)y1=15x+80(x≥0);y2=30x(x≥0);(2)当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
【解析】
试题分析:(1)根据函数图象中的信息,分别运用待定系数法求得y1,y2关于x的函数表达式即可;
(2)当y1=y2时,15x+80=30x,当y>y2时,15x+80>30x,当y1
把点(1,95)代入,可得
95=k1+80,
解得k1=15,
∴y1=15x+80(x≥0);
设y2=k2x,
把(1,30)代入,可得
30=k2,即k2=30,
∴y2=30x(x≥0);
(2)当y1=y2时,15x+80=30x,
解得x=;
当y1>y2时,15x+80>30x,
解得x<;
当y1<y2时,15x+80>30x,
解得x>;
∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
考点:1.用待定系数法求一次函数关系式;2.一次函数的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
根据菱形的性质,菱形的面积=对角线乘积的一半.
【详解】
解:菱形的面积是:.
故答案为1.
本题考核知识点:菱形面积. 解题关键点:记住根据对角线求菱形面积的公式.
20、
【解析】
利用提公因式完全平方公式分解因式.
【详解】
故答案为:
利用提公因式、平方差公式、完全平方公式分解因式.
21、1
【解析】
根据矩形的面积公式列出算式,根据二次根式的乘法法则计算,得到答案.
【详解】
矩形的面积=ab
=×
=×1××3
=1,
故答案为:1.
本题考查的是二次根式的应用,掌握二次根式的乘法法则是解题的关键.
22、120
【解析】
根据菱形的面积等于对角线积的一半,即可求得答案.
【详解】
解:菱形ABCD的面积
此题考查了菱形的性质.注意菱形的面积等于对角线积的一半.
23、4;1.
【解析】
首先画出坐标系,确定P点位置,根据坐标系可得答案.
【详解】
点P(﹣1,4)到x轴的距离为4,到y轴的距离是1.
故答案为:4;1.
本题考查了点的坐标,关键是正确确定P点位置.
二、解答题(本大题共3个小题,共30分)
24、(1)y=x+11;(2)x>﹣20时,y>1.
【解析】
(1)利用待定系数法求一次函数解析式;
(2)解不等式x+11>1即可.
【详解】
(1)根据题意得,解得,
所以直线解析式为y=x+11;
(2)解不等式x+11>1得x>﹣20,
即x>﹣20时,y>1.
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.
25、①矩形②
【解析】
(1)根据完美四边形的定义即可判断;
(2)根据题意画出图形,根据等腰三角形和直角三角形的性质即可求解.
【详解】
解:(1)初步运用:矩形
(2)问题探究:根据完美四边形的定义,结合题意可画出图形如下:
∵,,
∴,
∵,∴,.
∵,
∴,
∴.
在等腰中,过点作于点.
∴,由勾股定理可得:,,
∴完美四边形的周长为15.
∵,.
∴完美四边形的面积为.
此题主要考查四边形综合,解题的关键是熟知等腰梯形.等腰三角形及直角三角形的性质.
26、(1)购买一个篮球需60元,购买一个足球需28元;(2)篮球最多可购买21个.
【解析】
(1)设购买一个篮球元,购买一个足球元,根据“1个篮球和2个足球共需116元,2个篮球和3个足球共需204元”,即可得出关于、的二元一次方程组,解之即可得出结论;
(2)设购买个篮球,则购买的足球数为,根据费用=单价×数量,分别求出篮球和足球的费用,二者相加便是总费用,总费用不超过1800元,列出关于的一元一次不等式,解之即可得出结论.
【详解】
解:设购买一个篮球的需x元,购买一个足球的需 y元,
依题意得,
解得,
答:购买一个篮球需60元,购买一个足球需28元;
设购买m个篮球,则足球数为,
依题意得:,
解得:,
而m为正整数,
,
答:篮球最多可购买21个.
本题考查了二元一次方程组的应用及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,正确列出一元一次不等式.
题号
一
二
三
四
五
总分
得分
批阅人
2025届辽宁省辽阳市灯塔市第二初级中学数学九上开学检测模拟试题【含答案】: 这是一份2025届辽宁省辽阳市灯塔市第二初级中学数学九上开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届河南省信阳市第九中学数学九年级第一学期开学调研试题【含答案】: 这是一份2025届河南省信阳市第九中学数学九年级第一学期开学调研试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年辽阳市第十中学数学九年级第一学期开学调研试题【含答案】: 这是一份2024年辽阳市第十中学数学九年级第一学期开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。