年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2025届辽宁省沈阳市第八十二中学九上数学开学调研模拟试题【含答案】

    2025届辽宁省沈阳市第八十二中学九上数学开学调研模拟试题【含答案】第1页
    2025届辽宁省沈阳市第八十二中学九上数学开学调研模拟试题【含答案】第2页
    2025届辽宁省沈阳市第八十二中学九上数学开学调研模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届辽宁省沈阳市第八十二中学九上数学开学调研模拟试题【含答案】

    展开

    这是一份2025届辽宁省沈阳市第八十二中学九上数学开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列计算错误的是( )
    A. =2B.=3C.÷=3D.=1﹣=
    2、(4分)在同一平面直角坐标系中的图像如图所示,则关于的不等式的解为( ).
    A.B.C.D.无法确定
    3、(4分)已知一次函数y=(k﹣2)x+k+1的图象不过第三象限,则k的取值范围是( )
    A.k>2B.k<2C.﹣1≤k≤2D.﹣1≤k<2
    4、(4分)下列命题错误的是( )
    A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分
    C.矩形的对角线相等D.对角线相等的四边形是矩形
    5、(4分)如图,已知正方形面积为36平方厘米,圆与各边相接,则阴影部分的面积是( )平方厘米.()

    A.18B.7.74C.9D.28.26
    6、(4分)下列式子是分式的是( )
    A.B.C.x2yD.
    7、(4分)如图,在四边形ABCD中,AC与BD相交于点O,∠BAD=90°,BO=DO,那么添加下列一个条件后,仍不能判定四边形ABCD是矩形的是( )
    A.∠ABC=90°B.∠BCD=90°C.AB=CDD.AB∥CD
    8、(4分)下列各式:,,,,,,其中分式有( )
    A.2个 B.3个 C.4个 D.5个
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,平行四边形ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,连接AP,若S△APH=2,则S四边形PGCD=______.
    10、(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____.
    11、(4分)矩形的对角线与相交于点,,,分别是,的中点,则的长度为________.
    12、(4分)如图,点P是边长为5的正方形ABCD内一点,且PB=2,PB⊥BF,垂足为点B,请在射线BF上找一点M,使得以B,M,C为顶点的三角形与ABP相似,则BM=_____.
    13、(4分)若五个整数由小到大排列后,中位数为4,唯一的众数为2,则这组数据之和的最小值是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF.
    (1)求证:四边形CEDF是平行四边形;
    (2)若AB=4,AD=6,∠B=60°,求DE的长.
    15、(8分)先化简再求值:,其中.
    16、(8分)(1)计算:
    (2)解方程:.
    17、(10分)阅读材料:在实数范围内,当且时 ,我们由非负数的性质知道,所以, 即:,当且仅当=时,等号成立,这就是数学上有名的“均值不等式”,若与的积为定值. 则有最小值:请问: 若 , 则当取何值时,代数式取最小值? 最小值是多少?
    18、(10分)在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.
    (1)小明发现DG=BE且DG⊥BE,请你给出证明.
    (2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______.
    20、(4分)如图,平行四边形的对角线相交于点,且,平行四边形的周长为8,则的周长为______.
    21、(4分)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为 .
    22、(4分)如图,已知一次函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则关于x的不等式ax+b≤kx<1的解集为______.
    23、(4分)某学校八年级班有名同学,名男生的平均身高为名女生的平均身高,则全班学生的平均身高是__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)何老师安排喜欢探究问题的小明解决某个问题前,先让小明看了一个有解答过程的例题.
    例:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
    解:∵m2+2mn+2n2﹣6n+9=0
    ∴m2+2mn+n2+n2﹣6n+9=0
    ∴(m+n)2+(n﹣3)2=0
    ∴m+n=0,n﹣3=0∴m=﹣3,n=3
    为什么要对2n2进行了拆项呢?
    聪明的小明理解了例题解决问题的方法,很快解决了下面两个问题.相信你也能很好的解决下面的这两个问题,请写出你的解题过程..
    解决问题:
    (1)若x2﹣4xy+5y2+2y+1=0,求xy的值;
    (2)已知a、b、c是△ABC的三边长,满足a2+b2=10a+12b﹣61,c是△ABC中最短边的边长,且c为整数,那么c可能是哪几个数?
    25、(10分)如图,点E、F、G、H分别是四边形ABCD的边AB、BC、CD、DA的中点.
    (1)如果图中线段都可画成有向线段,那么在这些有向线段所表示的向量中,与向量相等的向量是 ;
    (2)设=,=,=.试用向量,或表示下列向量:= ;= .
    (3)求作:.(请在原图上作图,不要求写作法,但要写出结论)
    26、(12分)解不等式(组),并将其解集分别表示在数轴上
    (1)10﹣4(x﹣3)≤2(x﹣1);
    (2).
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    分析:根据二次根式的化简及计算法则即可得出答案.
    详解:A、 =2,正确;B、=3,正确;C、÷=3,正确;D、,错误;故选D.
    点睛:本题主要考查的是二次根式的计算法则,属于基础题型.明确计算法则是解决这个问题的关键.
    2、C
    【解析】
    求关于的不等式的解集就是求:能使函数的图象在函数的上边的自变量的取值范围.
    【详解】
    解:能使函数的图象在函数的上边时的自变量的取值范围是.
    故关于的不等式的解集为:.
    故选:.
    本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.
    3、D
    【解析】
    若函数y=kx+b的图象不过第三象限,则此函数的k<1,b≥1,据此求解.
    【详解】
    解:∵一次函数y=(k﹣2)x+k+1的图象不过第三象限,
    ∴k﹣2<1,k+1≥1
    解得:﹣1≤k<2,
    故选:D.
    本题考查一次函数的图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数是大于1或是小于1.
    4、D
    【解析】
    试题分析:根据菱形、矩形的判定,平行四边形、矩形的性质进行判断:
    A.对角线垂直平分的四边形是菱形,所以A正确;
    B.平行四边形的对角线相互平分,所以B正确;
    C.矩形的对角线相等,所以C正确;
    D.对角线相等的平行四边形是矩形,所以D错误;
    考点:菱形、矩形的判定,平行四边形、矩形的性质.
    5、B
    【解析】
    【分析】先求正方形的边长,可得圆的半径,再用正方形的面积减去圆的面积即可.
    【详解】因为6×6=36,所以正方形的边长是6厘米
    36-3.14×(6÷2)2
    =36-28.26
    =7.74(平方厘米)
    故选:B
    【点睛】本题考核知识点:正方形性质.解题关键点:理解正方形基本性质.
    6、B
    【解析】
    判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
    【详解】
    解:,x2y,均为整式,是分式,
    故选:B
    本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.
    7、C
    【解析】
    根据矩形的判定定理:有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形分别进行分析即可.
    【详解】
    A、∵∠BAD=90°,BO=DO,
    ∴OA=OB=OD,
    ∵∠ABC=90°,
    ∴AO=OB=OD=OC,
    即对角线平分且相等,
    ∴四边形ABCD为矩形,正确;
    B、∵∠BAD=90°,BO=DO,
    ∴OA=OB=OD,∵∠BCD=90°,
    ∴AO=OB=OD=OC,
    即对角线平分且相等,
    ∴四边形ABCD为矩形,正确;
    C、∵∠BAD=90°,BO=DO,AB=CD,
    无法得出△ABO≌△DCO,
    故无法得出四边形ABCD是平行四边形,
    进而无法得出四边形ABCD是矩形,错误;
    D、∵AB||CD,∠BAD=90°,
    ∴∠ADC=90°,
    ∵BO=DO,
    ∴OA=OB=OD,
    ∴∠DAO=∠ADO,
    ∴∠BAO=∠ODC,
    ∵∠AOB=∠DOC,
    ∴△AOB≌△DOC,
    ∴AB=CD,
    ∴四边形ABCD是平行四边形,
    ∵∠BAD=90°,
    ∴▱ABCD是矩形,正确;
    故选:C.
    此题主要考查了矩形的判定,关键是熟练掌握矩形的判定定理.
    8、B.
    【解析】
    试题分析:由分式的定义知:,,是分式,故选B.
    考点:分式的定义.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.
    【解析】
    根据平行四边形的判定定理得到四边形HPFD、四边形PGCF是平行四边形,根据平行四边形的性质、三角形的面积公式计算即可.
    【详解】
    ∵EF∥BC,GH∥AB,
    ∴四边形HPFD、四边形PGCF是平行四边形,
    ∵S△APH=2,CG=2BG,
    ∴S△DPH=2S△APH=4,
    ∴平行四边形HPFD的面积=1,
    ∴平行四边形PGCF的面积=×平行四边形HPFD的面积=4,
    ∴S四边形PGCD=4+4=1,
    故答案为1.
    本题考查的是平行四边形的判定和性质、三角形的面积计算,掌握平行四边形的性质定理是解题的关键.
    10、x>1.
    【解析】
    ∵直线y=x+b与直线y=kx+6交于点P(1,5),
    ∴由图象可得,当x>1时,x+b>kx+6,
    即不等式x+b>kx+6的解集为x>1.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    11、1
    【解析】
    分析题意,知道,分别是,的点,则可知是△AOD的中位线;结合中位线的性质可知= OA,故只要求出OA的长即可;已知矩形的一条对角线长,则可得出AC的长,进而得出OA的长,便可得解.
    【详解】
    ∵四边形ABCD是矩形,
    ∴BD=AC=4,
    ∴OA=2.
    ∵,是DO、AD的中点,
    ∴是△AOD的中位线,
    ∴= OA =1.
    故答案为:1
    此题考查中位线的性质,矩形的性质,解题关键在于利用中位线性质求解
    12、2或
    【解析】
    先利用等角的余角相等得到∠ABP=∠CBM,利用相似三角形的判定方法得到当时,△BAP∽△BCM,即;当时,△BAP∽△BMC,即,然后分别利用比例的性质求BM的长即可.
    【详解】
    如图,
    ∵四边形ABCD为正方形,
    ∴∠ABC=90°,BA=BC,
    ∵PB⊥BF,
    ∴∠PBM=90°,
    ∵∠ABP+∠CBP=90°,∠CBP+∠CBM=90°,
    ∴∠ABP=∠CBM,
    ∴当时,△BAP∽△BCM,即,解得BM=2;
    当时,△BAP∽△BMC,即,解得BM=,
    综上所述,当BM为2或 时,以B,M,C为顶点的三角形与△ABP相似.
    故答案为2或.
    此题主要考查的是相似三角形的判定和性质,应注意相似三角形的对应顶点不明确时,要分类讨论,不要漏解.
    13、19
    【解析】
    根据“五个整数由小到大排列后,中位数为4,唯一的众数为2”,可知此组数据的第三个数是4,第一个和第二个数是2,据此可知当第四个数是5,第五个数是6时和最小.
    【详解】
    ∵中位数为4
    ∴中间的数为4,
    又∵众数是2
    ∴前两个数是2,
    ∵众数2是唯一的,
    ∴第四个和第五个数不能相同,为5和6,
    ∴当这5个整数分别是2,2,4,5,6时,和最小,最小是2+2+4+5+6=19,故答案为19.
    本题考查中位数和众数,能根据中位数和众数的意义进行逆向推理是解决本题的关键.在读题时需注意“唯一”的众数为2,所以除了两个2之外其它的数只能为1个.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析(2)
    【解析】
    试题分析:(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;
    (2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.
    【详解】
    试题解析:(1)证明:在▱ABCD中,AD∥BC,且AD=BC.
    ∵F是AD的中点,
    ∴DF=AD.
    又∵CE=BC,
    ∴DF=CE,且DF∥CE,
    ∴四边形CEDF是平行四边形;
    (2)如图,过点D作DH⊥BE于点H.
    在▱ABCD中,∵∠B=60°,
    ∴∠DCE=60°.
    ∵AB=4,
    ∴CD=AB=4,
    ∴CH=CD=2,DH=2.
    在▱CEDF中,CE=DF=AD=3,则EH=1.
    ∴在Rt△DHE中,根据勾股定理知DE=.
    考点:平行四边形的判定与性质.
    15、1-
    【解析】
    试题分析:首先将括号里面的分式进行通分,然后根据分式的除法计算法则将分式进行约分化简,最后将x的值代入化简后的式子进行计算得出答案.
    试题解析:原式,将x=代入得:
    原式=1-.
    16、(1);(2)x1=0,x2=﹣1.
    【解析】
    (1)先算乘法,根据二次根式化简,再合并同类二次根式即可;
    (2)分解因式,即可得出两个一元一次方程,求出方程的解即可.
    【详解】
    (1)原式==;
    (2)x2+1x=0,
    x(x+1)=0,
    x=0,x+1=0,
    x1=0,x2=﹣1.
    本题考查二次根式的混合运算和解一元二次方程,能正确运用运算法则进行化简是解(1)的关键,能把一元二次方程转化成一元一次方程是解(2)的关键.
    17、x=2时,最小值是1.
    【解析】
    先提公因式,再根据“均值不等式”的性质计算.
    【详解】
    根据题意得:x= ,
    解得,x1=2,x2=-2(舍去),
    则当x=2时,代数式2x+取最小值,最小值是1.
    本题考查的是配方法的应用,掌握完全平方公式、“均值不等式”的概念是解题的关键.
    18、 (1)证明见解析;(2)S△ADG=1+.
    【解析】
    (1)利用正方形得到条件,判断出△ADG≌△ABE,根据全等三角形的性质即可得到结论;
    (2)利用正方形的性质在Rt△AMD中,∠MDA=45°,AD=2从而得出AM=DM=,在Rt△AMG中,AM2+GM2=AG2从而得出GM=即可.
    【详解】
    (1)解:如图1,延长EB交DG于点H,
    ∵四边形ABCD与四边形AEFG是正方形,
    ∴AD=AB,∠DAG=∠BAE=90°,AG=AE
    在△ADG与△ABE中,
    ∴△ADG≌△ABE(SAS),
    ∴∠AGD=∠AEB,
    ∵△ADG中∠AGD+∠ADG=90°,
    ∴∠AEB+∠ADG=90°,
    ∵△DEH中,∠AEB+∠ADG+∠DHE=180°,
    ∴∠DHE=90°,
    ∴DG⊥BE.
    (2)解:如图2,过点A作AM⊥DG交DG于点M,
    ∠AMD=∠AMG=90°,
    ∵BD是正方形ABCD的对角,
    ∴∠MDA=45°
    在Rt△AMD中,∵∠MDA=45°,AD=2,
    ∴AM=DM=,
    在Rt△AMG中,
    ∵AM2+GM2=AG2,
    ∴GM=,
    ∵DG=DM+GM=,
    ∴S△ADG==1+.
    此题考查了旋转的性质和正方形的性质,用到的知识点是旋转的性质、全等三角形的判定,勾股定理和正方形的性质,关键是根据题意画出辅助线,构造直角三角形.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、±1
    【解析】
    试题分析:根据坐标与图形得到三角形OAB的两边分别为|a|与5,然后根据三角形面积公式有:,
    解得a=1或a=-1,
    即a的值为±1.
    考点:1.三角形的面积;2.坐标与图形性质.
    20、4
    【解析】
    由平行四边形ABCD的对角线相交于点O,,根据线段垂直平分线的性质,可得AM=CM,又由平行四边形ABCD的周长为8,可得AD+CD的长,继而可得△CDE的周长等于AD+CD.
    【详解】
    ∵四边形ABCD是平行四边形
    ∴OB=OD,AB=CD,AD=BC
    ∵平行四边形ABCD的周长为8
    ∴AD+CD=4

    ∴AM=CM
    ∴△CDE的周长为:CD+CM+DM=CD+AM+DM=AD+CD=4.
    故答案为:4
    本题主要考查了平行四边形的性质,线段垂直平分线的性质。
    21、1或1或1
    【解析】
    本题根据题意分三种情况进行分类求解,结合三角函数,等边三角形的性质即可解题.
    【详解】
    试题分析:当∠APB=90°时(如图1),
    ∵AO=BO,
    ∴PO=BO,
    ∵∠AOC=60°,
    ∴∠BOP=60°,
    ∴△BOP为等边三角形,
    ∵AB=BC=4,
    ∴;
    当∠ABP=90°时(如图1),
    ∵∠AOC=∠BOP=60°,
    ∴∠BPO=30°,
    ∴,
    在直角三角形ABP中,

    如图3,∵AO=BO,∠APB=90°,
    ∴PO=AO,
    ∵∠AOC=60°,
    ∴△AOP为等边三角形,
    ∴AP=AO=1,
    故答案为或或1.
    考点:勾股定理.
    22、﹣4≤x<1
    【解析】
    先利用待定系数法求出y=kx的表达式,然后求出y=1时对应的x值,再根据函数图象得出结论即可.
    【详解】
    解:∵已知一次函数y=ax+b和y=kx的图象交于点P(﹣4,﹣1),
    ∴﹣4k=﹣1,
    解得:k=,
    ∴解析式为y=x,
    当y=1时,x=1,
    ∵由函数图象可知,当x≥﹣4时一次函数y=ax+b在一次函数y=kx图象的下方,
    ∴关于x的不等式ax+b≤kx<1的解集是﹣4≤x<1.
    故答案为:﹣4≤x<1.
    本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.
    23、
    【解析】
    只要运用求平均数公式:即可求得全班学生的平均身高.
    【详解】
    全班学生的平均身高是:.
    故答案为:1.
    本题考查的是样本平均数的求法.熟记公式是解决本题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1) 1;(2)c为2,3,1.
    【解析】
    (1)已知等式变形后,利用完全平方公式变形,利用非负数的性质求出x与y的值,即可求出的值;
    (2)由a2+b2=10a+12b-61,得a,b的值.进一步根据三角形一边边长大于另两边之差,小于它们之和,则b-a<c<a+b,即可得到答案.
    【详解】
    (1)∵x2﹣1xy+5y2+2y+1=0,
    ∴x2﹣1xy+1y2+y2+2y+1=0,
    则(x﹣2y)2+(y+1)2=0,
    解得x=﹣2,y=﹣1,
    故;
    (2)∵a2+b2=10a+12b﹣61,
    ∴(a﹣5)2+(b﹣6)2=0,
    ∴a=5,b=6,
    ∵1<c<11,且c为最短边,c为整数,
    ∴c为2,3,1.
    此题主要考查了完全平方公式的变形应用,解题关键是如何对已知问题拆分变形,构造完全平方公式,然后直接判断求解即可.
    25、(1);(2)+、+﹣;(3)如图所示见解析. .
    【解析】
    (1)由中位线定理得EF∥AC、EF=AC,HG∥AC、HG=AC,从而知EF=HG,且EF∥HG,根据相等向量的定义可得;
    (2)由可得;
    (3)由G为DC中点知,从而得=,据此根据三角形法则作图即可得.
    【详解】
    (1)∵E、F是AB、BC的中点,H、G是DA、DC的中点,
    ∴EF∥AC、EF=AC,HG∥AC、HG=AC,
    ∴EF=HG,且EF∥HG,
    ∴,
    故答案为:;
    (2)由图知,
    则,
    故答案为:;
    (3)如图所示:

    本题考查平面向量的知识,解题的关键是掌握中位线定理、相等向量的定义及三角形法则.
    26、(1)x≥1,解集在数轴上如图所示见解析;(2)﹣1≤x<3,解集在数轴上如图所示见解析.
    【解析】
    (1)去括号,移项,合并同类项,化系数为1即可;
    (2)先求出其中各不等式的解集,再求出这些解集的公共部分即可.
    【详解】
    (1)10﹣1(x﹣3)≤2(x﹣1)
    10﹣1x+12≤2x﹣2,
    ﹣6x≤﹣21,
    x≥1.
    解集在数轴上如图所示:
    (2)
    由①得到:x≥﹣1,
    由②得到:x<3,
    ∴﹣1≤x<3,
    本题考查不等式组的解法,数轴等知识,解题的关键是熟练掌握不等式组的解法,属于中考常考题型.
    题号





    总分
    得分

    相关试卷

    2025届辽宁省沈阳市和平区九上数学开学调研模拟试题【含答案】:

    这是一份2025届辽宁省沈阳市和平区九上数学开学调研模拟试题【含答案】,共29页。试卷主要包含了选择题,一象限B.第二,填空题等内容,欢迎下载使用。

    2025届辽宁省沈阳市第八十五中学九上数学开学调研试题【含答案】:

    这是一份2025届辽宁省沈阳市第八十五中学九上数学开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届辽宁省沈阳市第八十二中学九上数学开学调研模拟试题【含答案】:

    这是一份2025届辽宁省沈阳市第八十二中学九上数学开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map