终身会员
搜索
    上传资料 赚现金

    2025届辽宁省沈阳市和平区九上数学开学调研模拟试题【含答案】

    立即下载
    加入资料篮
    2025届辽宁省沈阳市和平区九上数学开学调研模拟试题【含答案】第1页
    2025届辽宁省沈阳市和平区九上数学开学调研模拟试题【含答案】第2页
    2025届辽宁省沈阳市和平区九上数学开学调研模拟试题【含答案】第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届辽宁省沈阳市和平区九上数学开学调研模拟试题【含答案】

    展开

    这是一份2025届辽宁省沈阳市和平区九上数学开学调研模拟试题【含答案】,共29页。试卷主要包含了选择题,一象限B.第二,填空题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)正比例函数y= -2x的图象经过( )
    A.第三、一象限B.第二、四象限C.第二、一象限D.第三、四象限
    2、(4分)函数y=中自变量x的取值范围是( )
    A.x>2B.x≤2C.x≥2D.x≠2
    3、(4分)如图,一直线与两坐标轴的正半轴分别交于A、B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为20,则该直线的函数表达式是( )
    A.y=x+10B.y=﹣x+10C.y=x+20D.y=﹣x+20
    4、(4分)如图,正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()
    A.8B.C.D.10
    5、(4分)在、、、、3中,最简二次根式的个数有( )
    A.4B.3C.2D.1
    6、(4分)下列方程是关于x的一元二次方程的是
    A.B.
    C.D.
    7、(4分)方程的根的情况是( )
    A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根
    8、(4分)函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在平面直角坐标系中,中,点,若随变化的一族平行直线与(包括边界)相交,则的取值范围是______.
    10、(4分)正方形,,,...按如图的方式放置,点,,...和点,,...分别在直线和轴上,则点的坐标为_______.
    11、(4分)如图,在直角坐标系中,正方形OABC顶点B的坐标为(6,6),直线CD交直线OA于点D,直线OE交线段AB于点E,且CD⊥OE,垂足为点F,若图中阴影部分的面积是正方形OABC的面积的,则△OFC的周长为______.
    12、(4分)如图,直线AB,IL,JK,DC,相互平行,直线AD,IJ、LK、BC互相平行,四边形ABCD面积为18,四边形EFGH面积为11,则四边形IJKL面积为____.
    13、(4分)如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=2,则CE的长为_______
    三、解答题(本大题共5个小题,共48分)
    14、(12分)阅读材料:各类方程的解法
    求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.
    用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
    (1)问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
    (2)拓展:用“转化”思想求方程的解;
    (3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.
    15、(8分)如图,A,B,C,D为四家超市,其中超市D距A,B,C三家超市的路程分别为25km,10km,5km.现计划在A,D之间的道路上建一个配货中心P,为避免交通拥堵,配货中心与超市之间的距离不少于2km.假设一辆货车每天从P出发为这四家超市送货各1次,由于货车每次仅能给一家超市送货,因此每次送货后均要返回配货中心P,重新装货后再前往其他超市.设P到A的路程为xkm,这辆货车每天行驶的路程为ykm.
    (1)求y与x之间的函数关系式,并写出自变量x的取值范围;
    (2)直接写出配货中心P建在什么位置,这辆货车每天行驶的路程最短?最短路程是多少?
    16、(8分)已知:如图,在▱ABCD中,设=,=.
    (1)填空:= (用、的式子表示)
    (2)在图中求作+.(不要求写出作法,只需写出结论即可)
    17、(10分)问题情境:在中,,点是的中点,以为角的顶点作.
    感知易证:(1)如图1,当射线经过点时,交边于点.将从图1中的位置开始,绕点按逆时针方向旋转,使射线、始终分别交边,于点、,如图2所示,易证,则有.
    操作探究:(2)如图2,与是否相似,若相似,请证明;若不相似,请说明理由;
    拓展应用:(3)若,直接写出当(2)中的旋转角为多少度时,与相似.
    18、(10分)如图,在平面直角坐标系中,为坐标原点,矩形的顶点、,将矩形的一个角沿直线折叠,使得点落在对角线上的点处,折痕与轴交于点.
    (1)求线段的长度;
    (2)求直线所对应的函数表达式;
    (3)若点在线段上,在线段上是否存在点,使以为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=a,DE交AC于点E,下列结论:①AD2=AE.AB;②1.8≤AE<5;⑤当AD=时,△ABD≌△DCE;④△DCE为直角三角形,BD为4或6.1.其中正确的结论是_____.(把你认为正确结论序号都填上)
    20、(4分)如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B重合,则重叠部分(△BEF)的面积为_________cm2.
    21、(4分)如图,含45°角的直角三角板DBC的直角顶点D在∠BAC的角平分线AD上,DF⊥AB于F,DG⊥AC于G,将△DBC沿BC翻转,D的对应点落在E点处,当∠BAC=90°,AB=4,AC=3时,△ACE的面积等于_____.
    22、(4分)一次数学测验中,某小组七位同学的成绩分别是:90,85,90,1,90,85,1.则这七个数据的众数是_____.
    23、(4分)如图,在直角坐标系中,、两点的坐标分别为和,将一根新皮筋两端固定在、两点处,然后用手勾住橡皮筋向右上方拉升,使橡皮筋与坐标轴围成一个矩形,若反比例函数的图像恰好经过点,则的值______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在中,分别是的平分线.
    求证:四边形是平行四边形.
    25、(10分)化简:(.
    26、(12分)如图,在平行四边形ABCD中,AC是它的一条对角线,BE⊥AC于点E,DF⊥AC于点F,求证:四边形BEDF是平行四边形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据正比例函数的图象和性质,k>0,图象过第一,三象限,k<0,图象过第二,四象限,即可判断.
    【详解】
    ∵正比例函数y= -2x,k<0,所以图象过第二,四象限,
    故选:B.
    考查了正比例函数的图象和性质,理解和掌握正比例函数的图象和性质是解题关键,注意系数的正负号决定了图象过的象限.
    2、B
    【解析】
    试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和的条件,要使在实数范围内有意义,必须.故选B.
    考点:1.函数自变量的取值范围;2.二次根式有意义的条件.
    3、B
    【解析】
    设点P的坐标为(x,y),根据矩形的性质得到|x|+|y|=10,变形得到答案.
    【详解】
    设点P的坐标为(x,y),
    ∵矩形的周长为20,
    ∴|x|+|y|=10,即x+y=10,
    ∴该直线的函数表达式是y=﹣x+10,
    故选:B.
    本题考查的是一次函数解析式的求法,掌握矩形的性质、灵活运用待定系数法求一次函数解析式是解题的关键.
    4、D
    【解析】
    要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.
    【详解】
    连接BM,
    ∵点B和点D关于直线AC对称,
    ∴NB=ND,
    则BM就是DN+MN的最小值,
    ∵正方形ABCD的边长是8,DM=2,
    ∴CM=6,
    ∴BM==1,
    ∴DN+MN的最小值是1.
    故选:D.
    此题考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题的难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.
    5、C
    【解析】
    最简二次根式就是被开方数不含分母,并且不含有开方开的尽的因数或因式的二次根式,根据以上条件即可判断.
    【详解】
    、、不是最简二次根式.
    、3是最简二次根式.
    综上可得最简二次根式的个数有2个.
    故选C.
    本题考查最简二次根式的定义,一定要掌握最简二次根式必须满足两个条件,被开方数不含分母且被开方数不含能开得尽方的因数或因式.
    6、D
    【解析】
    根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是1;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.
    【详解】
    A.ax1+bx+c=0,当a=0时,不是一元二次方程,故A错误;
    B.+=1,不是整式方程,故B错误;
    C.x1+1x=x1﹣1,是一元一次方程,故C错误;
    D.3(x+1)1=1(x+1),是一元二次方程,故D正确.
    故选D.
    本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.
    7、C
    【解析】
    把a=1,b=-1,c=3代入△=b2-4ac进行计算,然后根据计算结果判断方程根的情况.
    【详解】
    ∵a=1,b=-1,c=3,
    ∴△=b2-4ac=(-1)2-4×1×3=-11<0,
    所以方程没有实数根.
    故选C.
    本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.
    8、D
    【解析】
    当反比例函数图象分布在第一、三象限,则a>0,然后根据一次函数图象与系数的关系对A、B进行判断;当反比例函数图象分布在第二、四象限,则a<0,然后根据一次函数图象与系数的关系对C、D进行判断.
    【详解】
    解:A、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以A选项错误;
    B、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以B选项错误;
    C、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以C选项错误;
    D、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以D选项正确.
    故选:D.
    本题考查了反比例函数图象:反比例函数y=的图象为双曲线,当k>0,图象分布在第一、三象限;当k<0,图象分布在第二、四象限.也考查了一次函数图象.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据题意,可知点B到直线的距离最短,点C到直线的距离最长,求出两个临界点b的值,即可得到取值范围.
    【详解】
    解:根据题意,点,
    ∵直线与(包括边界)相交,
    ∴点B到直线的距离了最短,点C到直线的距离最长,
    当直线经过点B时,有

    ∴;
    当直线经过点C时,有

    ∴;
    ∴的取值范围是:.
    本题考查了一次函数的图像和性质,以及一次函数的平移问题,解题的关键是掌握一次函数的性质,一次函数的平移,正确选出临界点进行解题.
    10、
    【解析】
    按照由特殊到一般的思路,先求出点A 1、B 1;A 2、B 2;A 3、B 3;A 4、B 4的坐标,得出一般规律,进而得出点A n、Bn的坐标,代入即得答案.
    【详解】
    解:∵直线,x=0时,y=1,∴OA 1=1,
    ∴点A 1的坐标为(0,1),点B 1的坐标为(1,1),
    ∵对直线,当x=1时,y=2,∴A 2C 1=2,
    ∴点A 2的坐标为(1,2),点B 2的坐标为(3,2),
    ∵对直线,当x=3时,y=4,∴A 3C 2=4,
    ∴点A 3的坐标为(3,4),点B 3的坐标为(7,4),
    ∵对直线,当x=7时,y=8,∴A 4C 3=8,
    ∴点A 4的坐标为(7,8),点B 4的坐标为(15,8),
    ……
    ∴点A n的坐标为(2 n ﹣1﹣1,2 n ﹣1), 点B n的坐标为(2 n ﹣1,2 n ﹣1)
    ∴点的坐标为(2 2019 ﹣1,2 2018)
    本题主要考查一次函数图象上点的坐标特征、正方形的性质和规律的探求,解决这类问题一般从特殊情况入手,找出数量上的变化规律,从而推出一般性的结论.
    11、3+2
    【解析】
    证明△COD≌△OAE,推理出△OCF面积=四边形FDAE面积=2÷2=3,设OF=x,FC=y,则xy=2,x2+y2=1,所以(x+y)2=x2+y2+2xy=30,从而可得x+y的值,则△OFC周长可求.
    【详解】
    ∵正方形OABC顶点B的坐标为(3,3),
    ∴正方形的面积为1.
    所以阴影部分面积为1×=2.
    ∵四边形AOCB是正方形,
    ∴∠AOC=90°,即∠COE+∠AOE=90°,
    又∵CD⊥OE,
    ∴∠CFO=90°
    ∴∠OCF+∠COF=90°,
    ∴∠OCD=∠AOE
    在△COD和△OAE中
    ∴△COD≌△OAE(AAS).
    ∴△COD面积=△OAE面积.
    ∴△OCF面积=四边形FDAE面积=2÷2=3.
    设OF=x,FC=y,
    则xy=2,x2+y2=1,
    所以(x+y)2=x2+y2+2xy=30.
    所以x+y=2.
    所以△OFC的周长为3+2.
    故答案为3+2.
    本题主要考查了正方形的性质、全等三角形的判定和性质,解题的关键是推理出两个阴影部分面积相等,得到△OFC两直角边的平方和、乘积,运用完全平方公式求解出OF+FC值.
    12、1
    【解析】
    由平行四边形的性质可得,,,,由面积和差关系可求四边形面积.
    【详解】
    解:,,
    四边形是平行四边形,

    同理可得:,,,
    四边形面积四边形面积(四边形面积四边形面积),
    故答案为:1.
    本题考查了平行四边形的判定与性质,由平行四边形的性质得出是解题的关键.
    13、5或
    【解析】
    分析:由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.
    详解:∵四边形ABCD是菱形,
    ∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,

    ∴△ABD是等边三角形,
    ∴BD=AB=6,



    ∵点E在AC上,
    ∴当E在点O左边时
    当点E在点O右边时
    ∴或;
    故答案为或.
    点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)-2,1;(2)x=3;(3)4m.
    【解析】
    (1)因式分解多项式,然后得结论;
    (2)两边平方,把无理方程转化为整式方程,求解,注意验根;
    (3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,
    【详解】
    解:(1),

    所以或或
    ,,;
    故答案为,1;
    (2),
    方程的两边平方,得


    ,,
    当时,,
    所以不是原方程的解.
    所以方程的解是;
    (3)因为四边形是矩形,
    所以,
    设,则
    因为,



    两边平方,得
    整理,得
    两边平方并整理,得

    所以.
    经检验,是方程的解.
    答:的长为.
    考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.
    15、(1)y═-4x+180(2≤x≤23);(2)当配货中心P建在AP=23km位置时,这辆货车每天行驶的路程最短.其最短路程是88km.
    【解析】
    1)由题意得2≤x≤25-2,结合图象分别得出货车从P到A,B,C,D的距离,进而得出y与x的函数关系;
    (2)利用(1)中所求得出函数解析式,利用x的取值范围,根据函数的性质求得最小值及此时的x的值.
    【详解】
    解:(1)∵由题意得2≤x≤25-2,
    货车从P到A往返1次的路程为2x,
    货车从P到B往返1次的路程为:2(5+25-x)=60-2x,
    货车从P到C往返1次的路程为:2(25-x+10)=70-2x,
    货车从P到D往返1次的路程为:2(25-x)=50-2x,
    这辆货车每天行驶的路程为:y=2x+60-2x+70-2x+50-2x=-4x+180,
    即;
    (2)∵y═-4x+180(2≤x≤23),其中a=-4<0,
    ∴y随x的增大而减小,
    ∴当x=23时,ymin=-4×23+180=88;
    ∴当配货中心P建在AP=23km位置时,这辆货车每天行驶的路程最短.其最短路程是88km.
    故答案为:(1)y═-4x+180(2≤x≤23);(2)当配货中心P建在AP=23km位置时,这辆货车每天行驶的路程最短.其最短路程是88km.
    本题考查一次函数的应用以及函数性质,利用已知分别表示出从P到A,B,C,D距离是解题关键.
    16、 (1) -;(2)
    【解析】
    (1)根据三角形法则可知:延长即可解决问题;
    (2)连接BD.因为 即可推出
    【详解】
    解:(1)∵ =,=

    故答案为-.
    (2)连接BD.


    ∴即为所求;
    本题考查作图﹣复杂作图、平行四边形的性质、平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    17、(1)CD;(2)△BDF∽△DEF,理由见详解;(3)10°或40°.
    【解析】
    (1)如图2,根据∠EDF=∠B及三角形外角性质可得∠BFD=∠CDE,再根据∠B=∠C即可得到△BFD∽△CDE解决问题.
    (2)如图2,由(2)得△BFD∽△CDE,则有,由D是BC的中点可得.再根据∠B=∠EDF即可得到△BDF∽△DEF.
    (3)由∠B=∠C=50°可得∠BAC=80°,AB=AC,再由BD=CD可得AD⊥BC.若△DEF与△ABC相似,由△BDF∽△DEF可得△BDF与△ABC相似,从而得到∠BDF=∠BAC=80°,或∠BDF=∠C=50°,即可解决问题.
    【详解】
    解:(1)如图2,

    ∵AB=AC
    ∴∠B=∠C,
    ∵∠FDC是△BFD的一个外角,
    ∴∠FDC=∠B+∠BFD.
    ∵∠FDC=∠FDE+∠EDC,∠EDF=∠B,
    ∴∠BFD=∠CDE.
    ∵∠B=∠C,
    ∴△BFD∽△CDE;
    ∴.
    (2)如图2,结论:△BDF∽△DEF.

    理由:由(1)得.
    ∵D是BC的中点,
    ∴BD=CD,
    ∴,
    又∵∠B=∠EDF,
    ∴△BDF∽△DEF.
    (3)连接AD,如图3,

    ∵∠B=∠C=50°,
    ∴∠BAC=80°,AB=AC.
    ∵BD=CD,
    ∴AD⊥BC.
    若△DEF与△ABC相似,
    ∵△BDF∽△DEF,
    ∴△BDF与△ABC相似,
    ∴∠BDF=∠BAC=80°,或∠BDF=∠C=50°,
    ∴∠ADF=90°﹣80°=10°,或∠ADF=90°﹣50°=40°,
    ∴当(2)中的旋转角为10°或40°时,△DEF与△ABC相似.
    本题属于相似形综合题,主要考查了相似三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质、三角形内角和定理等知识,解题的关键是正确寻找相似三角形的判定条件,属于中考常考题型.
    18、(1)15;(2);(3)
    【解析】
    (1)根据勾股定理即可解决问题;
    (2)设AD=x,则OD=OA=AD=12-x,根据轴对称的性质,DE=x,BE=AB=9,又OB=15,可得OE=OB-BE=15-9=6,在Rt△OED中,根据OE2+DE2=OD2,构建方程即可解决问题;
    (3)过点E作EP∥BD交BC于点P,过点P作PQ∥DE交BD于点Q,则四边形DEPQ是平行四边形,再过点E作EF⊥OD于点F,想办法求出最小PE的解析式即可解决问题.
    【详解】
    解:(1)由题知:.
    (2)设,则,
    根据轴对称的性质,,,
    又,
    ∴,
    在中,,
    即,
    解得 ,
    ∴,
    ∴点,
    设直线所对应的函数表达式为:,
    则, 解得 ,
    ∴直线所对应的函数表达式为:,
    (3)存在,过点作EP∥DB交于点,过点作PQ∥ED交于点,则四边形是平行四边形.再过点作于点,
    由,
    得,即点的纵坐标为,
    又点在直线:上,
    ∴, 解得 , ∴
    由于EP∥DB,所以可设直线:,
    ∵在直线上
    ∴, 解得 ,
    ∴直线:,
    令,则,
    解得,
    ∴.
    本题考查一次函数综合题、矩形的性质、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握待定系数法,学会构建一次函数解决问题,属于中考压轴题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、①②④.
    【解析】
    ①易证△ABD∽△ADF,结论正确;
    ②由①结论可得:AE=,再确定AD的范围为:3≤AD<5,即可证明结论正确;
    ③分两种情况:当BD<4时,可证明结论正确,当BD>4时,结论不成立;故③错误;
    ④△DCE为直角三角形,可分两种情况:∠CDE=90°或∠CED=90°,分别讨论即可.
    【详解】
    解:如图,在线段DE上取点F,使AF=AE,连接AF,
    则∠AFE=∠AEF,
    ∵AB=AC,
    ∴∠B=∠C,
    ∵∠ADE=∠B=a,
    ∴∠C=∠ADE=a,
    ∵∠AFE=∠DAF+∠ADE,∠AEF=∠C+∠CDE,
    ∴∠DAF=∠CDE,
    ∵∠ADE+∠CDE=∠B+∠BAD,
    ∴∠CDE=∠BAD,
    ∴∠DAF=∠BAD,
    ∴△ABD∽△ADF
    ∴,即AD2=AB•AF
    ∴AD2=AB•AE,
    故①正确;
    由①可知:,
    当AD⊥BC时,由勾股定理可得:

    ∴,
    ∴,即,故②正确;
    如图2,作AH⊥BC于H,
    ∵AB=AC=5,
    ∴BH=CH=BC=4,
    ∴,
    ∵AD=AD′=,
    ∴DH=D′H=,
    ∴BD=3或BD′=5,CD=5或CD′=3,
    ∵∠B=∠C
    ∴△ABD≌△DCE(SAS),△ABD′与△D′CE不是全等形
    故③不正确;
    如图3,AD⊥BC,DE⊥AC,
    ∴∠ADE+∠DAE=∠C+∠DAE=90°,
    ∴∠ADE=∠C=∠B,
    ∴BD=4;
    如图4,DE⊥BC于D,AH⊥BC于H,
    ∵∠ADE=∠C,
    ∴∠ADH=∠CAH,
    ∴△ADH∽△CAH,
    ∴,即,
    ∴DH=,
    ∴BD=BH+DH=4+==6.1,
    故④正确;
    综上所述,正确的结论为:①②④;
    故答案为:①②④.
    本题属于填空题压轴题,考查了直角三角形性质,勾股定理,全等三角形判定和性质,相似三角形判定和性质,动点问题和分类讨论思想等;解题时要对所有结论逐一进行分析判断,特别要注意分类讨论.
    20、7.1cm2
    【解析】
    已知四边形ABCD是矩形根据矩形的性质可得BC=DC,∠BCF=∠DCF=90°,又知折叠使点D和点B重合,根据折叠的性质可得C′F=CF,在RT△BCF中,根据勾股定理可得BC2+CF2=BF2,即32+(9-BF)2=BF2,解得BF=1,所以△BEF的面积=BF×AB=×1×3=7.1.
    点睛:本题考查了翻折变换的性质,矩形的性质,勾股定理,熟记翻折前后两个图形能够重合找出相等的线段、相等的角是解题的关键.
    21、
    【解析】
    根据勾股定理得到BC=5,由折叠的性质得到△BCE是等腰直角三角形,过E作EH⊥AC交CA的延长线于H,根据勾股定理得到EH=,于是得到结论
    【详解】
    ∵在△ABC中,∠BAC=90°,AB=4,AC=3,
    ∴BC=5,
    ∵△BCE是△DBC沿BC翻转得到得
    ∴△BCE是等腰直角三角形,
    ∴∠BEC=90°,∠BCE=45°,CE= ,BC=
    过E作EH⊥AC交CA的延长线于H,
    易证△CEH≌△DCG,△DBF≌△DCG
    ∴EH=CG, BF=CG,
    ∵四边形AFDG和四边形BECD是正方形
    ∴AF=AG,
    设BF=CG=x,则AF=4-x,AG=3+x
    ∴4-x=3+x,
    ∴x=
    ∴EH=CG=
    ∴△ACE的面积=××3= ,
    故答案为:
    此题考查折叠问题和勾股定理,等腰直角三角形的性质,解题关键在于做辅助线
    22、2
    【解析】分析:众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此即可求解.
    详解:依题意得2出现了3次,次数最多,
    故这组数据的众数是2.
    故答案为2
    点睛:此题考查了众数的定义,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.
    23、48
    【解析】
    先根据已知条件得到OA=8,OB=6,由勾股定理得到根据矩形的性质即可得到结论.
    【详解】
    解:∵A、B两点的坐标分别为(0,8)和(6,0),
    ∴OA=8,OB=6,
    ∵四边形AOBC是矩形,
    ∴AC=OB=6,OA=BC=8,
    ∴C(6,8),
    反比例函数的图像恰好经过点,
    ∴k=6,
    本题考查了矩形的性质,坐标与图形性质,熟练掌握矩形的性质是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、详见解析.
    【解析】
    由四边形ABCD是平行四边形可得,CE∥AF,∠DAB=∠DCB,又AE、CF分别平分∠DAB、∠BCD,所以∠2=∠3,可证四边形AFCE是平行四边形.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴CE∥AF,∠DAB=∠DCB,
    ∵AE、CF分别平分∠DAB、∠BCD,
    ∴∠2=∠3,
    又∠3=∠CFB,
    ∴∠2=∠CFB,
    ∴AE∥CF,
    又CE∥AF,
    ∴四边形AFCE是平行四边形.
    25、8-4
    【解析】
    【分析】运用平方差公式和完全平方公式可求出结果.
    【详解】解:原式=2﹣1+3﹣4+4
    =8﹣4.
    【点睛】本题考核知识点:整式运算.解题关键点:熟记平方差公式和完全平方公式.
    26、见试题解析
    【解析】
    通过全等三角形(△ABE≌△CDF)的对应边相等推知BE=DF,由“一组对边平行且相等四边形是平行四边形“证得四边形BEDF是平行四边形.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴AB=DC,且AB∥DC,
    ∴∠BAE=∠DCF.
    又∵BE⊥AC,DF⊥AC,
    ∴∠AEB=∠CFD=90°.
    在△ABE与△CDF中,

    ∴△ABE≌△CDF(AAS),
    ∴BE=DF;
    ∵BE⊥AC,DF⊥AC,
    ∴BE∥DF,
    ∴四边形BEDF是平行四边形.
    考点: 平行四边形的判定与性质.
    题号





    总分
    得分

    相关试卷

    2025届辽宁省沈阳市第八十五中学九上数学开学调研试题【含答案】:

    这是一份2025届辽宁省沈阳市第八十五中学九上数学开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届辽宁省沈阳市第八十二中学九上数学开学调研模拟试题【含答案】:

    这是一份2025届辽宁省沈阳市第八十二中学九上数学开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届辽宁省沈阳市第八十二中学九上数学开学调研模拟试题【含答案】:

    这是一份2025届辽宁省沈阳市第八十二中学九上数学开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map