年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2025届漯河市重点中学数学九年级第一学期开学经典试题【含答案】

    2025届漯河市重点中学数学九年级第一学期开学经典试题【含答案】第1页
    2025届漯河市重点中学数学九年级第一学期开学经典试题【含答案】第2页
    2025届漯河市重点中学数学九年级第一学期开学经典试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届漯河市重点中学数学九年级第一学期开学经典试题【含答案】

    展开

    这是一份2025届漯河市重点中学数学九年级第一学期开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在中,,垂足为,,,则的长为( )
    A.B.C.D.
    2、(4分)如图,正方形OABC的兩辺OA、OC分別在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是( )
    A.(1,10)B.(-2,0)C.(2,10)或(-2,0)D.(10,2)或(-2,0)
    3、(4分)函数的图象经过点,若,则,、0三者的大小关系是( )
    A.B.C.D.
    4、(4分)如图,矩形纸片中,,把纸片沿直线折叠,点落在处,交于点,若,则的面积为( )
    A.B.C.D.
    5、(4分)直线l是以二元一次方程的解为坐标所构成的直线,则该直线不经过的象限是( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    6、(4分)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为的菱形,剪口与折痕所成的角的度数为()
    A.B.
    C.D.
    7、(4分)用配方法解方程x2﹣4x﹣2=0变形后为( )
    A.(x﹣4)2=6 B.(x﹣2)2=6 C.(x﹣2)2=2 D.(x+2)2=6
    8、(4分)如图,直线与分别交x轴于点,,则不等式的解集为( )
    A.B.C.D.或
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)计算的结果是_______________.
    10、(4分)如图,矩形的面积为,平分,交于,沿将折叠,点的对应点刚好落在矩形两条对角线的交点处.则的面积为________.
    11、(4分)如果关于x的方程有实数根,则m的取值范围是_______________.
    12、(4分)计算+×的结果是_____.
    13、(4分)如图,一次函数y=-2x+2的图象与轴、轴分别交于点、,以线段为直角边在第一象限内作等腰直角三角形ABC,且,则点C坐标为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)先化简,再求代数式的值:(x﹣1)÷(﹣1),再从1,﹣1和2中选一个你认为合适的数x作为的值代入求值.
    15、(8分)已知:如图,在等边三角形中,点,分别在边和上,且.以为边作等边三角形,连接,,.
    (1)你能在图中找到一对全等三角形吗?请说明理由;
    (2)图中哪个三角形可以通过旋转得到另一个三角形?请说明是怎样旋转的.
    16、(8分)解方程:
    (1)x2﹣4x=1
    (2)
    17、(10分)如图所示,已知一次函数的图像直线AB经过点(0,6)和点(-2,0).
    (1)求这个函数的解析式;
    (2)直线AB与x轴交于点A,与y轴交于点B,求△AOB的面积.
    18、(10分)已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,点关于原点中心对称,且点在反比例函数的图象上,轴,连接,则的面积为______.
    20、(4分)如图,现有一张边长为的正方形纸片,点为正方形边上的一点(不与点,点重合)将正方形纸片折叠,使点落在边上的处,点落在处,交于,折痕为,连接,.则的周长是______.
    21、(4分)一副常规的直角三角板如图放置,点在的延长线上,,,若,则______.
    22、(4分) “折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为_____尺.
    23、(4分)函数y=中,自变量x的取值范围是________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.
    (1)求每台电冰箱与空调的进价分别是多少?
    (2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?
    25、(10分)如图,等边△ABC的边长6cm.①求高AD;②求△ABC的面积.
    26、(12分)如图,在平行四边形中,点、别在,上,且.
    (1)如图①,求证:四边形是平行四边形;
    (2)如图②,若,且.,求平行四边形的周长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据题意,可以证得△ACD∽△CBD,进而得到,由已知数据代入即可.
    【详解】
    由题意知,,
    ∴∠ADC=∠BDC=90°,∠A=∠BCD,
    ∴△ACD∽△CBD,
    ∴,
    即,
    ∵,,
    ∴CD=4,
    故选:A.
    本题考查了直角三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.
    2、C
    【解析】
    根据题意,分顺时针旋转和逆时针旋转两种情况,求出点D′到x轴、y轴的距离,即可判断出旋转后点D的对应点D′的坐标是多少即可.
    【详解】
    解:因为点D(5,3)在边AB上,
    所以AB=BC=5,BD=5-3=2;
    (1)若把△CDB顺时针旋转90°,
    则点D′在x轴上,OD′=2,
    所以D′(-2,0);
    (2)若把△CDB逆时针旋转90°,
    则点D′到x轴的距离为10,到y轴的距离为2,
    所以D′(2,10),
    综上,旋转后点D的对应点D′的坐标为(-2,0)或(2,10).
    故选C.
    本题考查坐标与图形变化-旋转,考查了分类讨论思想的应用,解答此题的关键是要注意分顺时针旋转和逆时针旋转两种情况.
    3、A
    【解析】
    根据反比例函数图象上点的坐标特征得到x1•y1=x2•y2=-6,然后根据x1<x2<0即可得到y1与y2的大小关系.
    【详解】
    根据题意得x1•y1=x2•y2=6,则函数y=的图象位于第一、三象限,且在每一象限内y随x的增大而减小,
    ∵x1<x2<0,
    ∴y2<y1<0,
    故选A.
    本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    4、A
    【解析】
    由矩形的性质可得∠B=90°,AB∥CD,可得∠DCA=∠CAB,由折叠的性质可得BC=EC=4cm,AB=AE,∠E=∠B=90°,∠EAC=∠CAB=∠DCA,可得AO=OC=5cm,由勾股定理可求OE的长,即可求△ABC的面积.
    【详解】
    解:∵四边形ABCD是矩形
    ∴∠B=90°,AB∥CD
    ∴∠DCA=∠CAB
    ∵把纸片ABCD沿直线AC折叠,点B落在E处,
    ∴BC=EC=4cm,AB=AE,∠E=∠B=90°,∠EAC=∠CAB,
    ∴∠DCA=∠EAC
    ∴AO=OC=5cm
    ∴,
    ∴AE=AO+OE=8cm,
    ∴AB=8cm,
    ∴△ABC的面积=×AB×BC=16cm2,
    故选:A.
    本题考查了翻折变换,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.
    5、B
    【解析】
    将二元一次方程化为一元一次函数的形式,再根据k,b的取值确定直线不经过的象限.
    【详解】
    解:由得:,

    直线经过第一、三、四象限,不经过第二象限.
    故答案为:B
    本题考查了一次函数与二元一次方程的关系及其图像与性质,根据k,b的值确定一次函数经过的象限是解题的关键.
    6、C
    【解析】
    折痕为AC与BD,∠BAD=100°,根据菱形的性质:菱形的对角线平分对角,可得∠ABD=40°,易得∠BAC=50°,所以剪口与折痕所成的角a的度数应为40°或50°.
    【详解】
    ∵四边形ABCD是菱形,
    ∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,
    ∵∠BAD=100°,
    ∴∠ABC=180°-∠BAD=180°-100°=80°,
    ∴∠ABD=40°,∠BAC=50°.
    ∴剪口与折痕所成的角a的度数应为40°或50°.
    故选:C.
    此题考查菱形的判定,折叠问题,解题关键是熟练掌握菱形的性质:菱形的对角线平分每一组对角.
    7、B
    【解析】
    在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.
    【详解】
    把方程x2-4x-2=0的常数项移到等号的右边,得到x2-4x=2
    方程两边同时加上一次项系数一半的平方,得到x2-4x+4=2+4
    配方得(x-2)2=1.
    故选B.
    配方法的一般步骤:
    (1)把常数项移到等号的右边;
    (2)把二次项的系数化为1;
    (3)等式两边同时加上一次项系数一半的平方.
    选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
    8、D
    【解析】
    把,转化为不等式组①或②,然后看两个函数的图象即可得到结论.
    【详解】

    ∴①或②
    ∵直线与分别交x轴于点,
    观察图象可知①的解集为:,②的解集为:
    ∴不等式的解集为或.
    故选D.
    本题主要考查一次函数和一元一次不等式,学会根据图形判断函数值的正负是关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    应用二次根式的乘除法法则()及同类二次根式的概念化简即可.
    【详解】
    解:
    故答案为:
    本题考查了二次根式的化简,综合运用二次根式的相关概念是解题的关键.
    10、
    【解析】
    先证明△AEB≌△FEB≌△DEF,从而可知S△ABE =S△DAB,即可求得△ABE的面积.
    【详解】
    解:由折叠的性质可知:△AEB≌△FEB
    ∴∠EFB=∠EAB=90°
    ∵ABCD为矩形
    ∴DF=FB
    ∴EF垂直平分DB
    ∴ED=EB
    在△DEF和△BEF中
    DF=BF EF=EF ED=EB
    ∴△DEF≌△BEF
    ∴△AEB≌△FEB≌△DEF
    ∴.
    故答案为1.
    本题主要考查的是折叠的性质、矩形的性质、线段垂直平分线的性质和判定、全等三角形的判定和性质,证得△AEB≌△FEB≌△DEF是解题的关键.
    11、
    【解析】
    分析:根据方程的系数结合根的判别式,即可得出△=16-8m≥0,解之即可得出m的取值范围.
    详解:∵关于x的方程有实数根,
    ∴△=(-4)²-4×2m=16-8m≥0,
    解得:m≤2
    故答案为:m≤2
    点睛:本题考查了根的判别式,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.
    12、.
    【解析】
    原式===,
    故答案为.
    【点睛】本题考查了二次根式的混合运算,准确地对每一个二次根式进行化简,熟练运算法则是解题的关键.
    13、 (3,1);
    【解析】
    先求出点A,B的坐标,再判断出△ABO≌△CAD,即可求出AD=2,CD=1,即可得出结论;
    【详解】
    如图,过点C作CD⊥x轴于D,
    令x=0,得y=2,
    令y=0,得x=1,
    ∴A(1,0),B(0,2),
    ∴OA=1,OB=2,
    ∵△ABC是等腰直角三角形,
    ∴AB=AC,∠BAC=90°,
    ∴∠BAO+∠CAD=90°,
    ∵∠ACD+∠CAD=90°,
    ∴∠BAO=∠ACD,
    ∵∠BOA=∠ADC=90°,
    ∴△ABO≌△CAD,
    ∴AD=BO=2,CD=AO=1,
    ∴OD=3,
    ∴C(3,1);
    此题考查一次函数综合,解题关键在于作辅助线
    三、解答题(本大题共5个小题,共48分)
    14、﹣(x+1),-1.
    【解析】
    括号内先通分进行分式加减法运算,然后再进行分式的乘除法运算,最后从所给数个中选择一个使分式有意义的数值代入进行计算即可.
    【详解】
    (x﹣1)÷(﹣1)
    =(x﹣1)÷
    =(x﹣1)•
    =﹣(x+1),
    当x=2时,原式=﹣(2+1)=﹣1.
    本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.
    15、(1),见详解;(2)绕点顺时针旋转得到,见详解
    【解析】
    (1)根据三角形全等的判定即可得到答案;
    (2)在全等的三角形中根据旋转的定义即可得到答案.
    【详解】
    解:.
    证明:,为等边三角形

    在和中
    (2)绕点顺时针旋转得到.
    本题考查旋转的性质,等边三角形的性质,三角形全等的判定,认真观察图形找到全等的三角形是解决问题的关键.
    16、(1)x1=2+,x2=2﹣;(2)原方程无解.
    【解析】
    (1)首先采用凑完全平方公式的原则,凑成完全平方式,在求解.
    (2)采用分式方程的求解方法求解即可.
    【详解】
    解:(1)∵x2﹣4x+4=1+4,
    ∴(x﹣2)2=5,
    则x﹣2=±,
    ∴x1=2+,x2=2﹣;
    (2)方程两边同时乘以(x+2)(x﹣2)得:
    (x﹣2)2﹣(x+2)(x﹣2)=16,
    解得:x=﹣2,
    检验:当x=﹣2时,(x+2)(x﹣2)=0,
    ∴x=﹣2是原方程的增根,
    ∴原方程无解.
    本题主要考查分式方程和完全平方式方程的解法,关键在于凑和分式方程的分母的增根检验.
    17、 (1)一次函数的解析式为:y=3x+6;(2)△AOB的面积=×6×2=6.
    【解析】
    (1)设一次函数的解析式为y=kx+b(k≠0),再把点(0,6)和点(-2,0)代入求出k、b的值即可;
    (2)求出直线与坐标轴的交点,再利用三角形的面积公式即可得出结论.
    【详解】
    (1)设一次函数的解析式为y=kx+b(k≠0),
    ∵一次函数的图象经过点点(0,6)和点(-2,0),
    ∴,
    解得,
    ∴一次函数的解析式为:y=3x+6;
    (2)∵一次函数的解析式为y=3x+6,
    ∴与坐标轴的交点为(0,6)和(-2,0),
    ∴△AOB的面积=×6×2=6.
    本题考查待定系数法求一次函数解析式和一次函数图象上点的坐标特征,解题的关键是掌握待定系数法求一次函数解析式.
    18、证明过程见详解.
    【解析】
    连接AF,ED,EF,EF交AD于O,证明四边形AEDF为平行四边形,利用平行四边形的性质可得答案.
    【详解】
    证明:连接AF,ED,EF,EF交AD于O,
    ∵AE=DF,AE∥DF,
    ∴四边形AEDF为平行四边形;
    ∴EO=FO,AO=DO;
    又∵AB=CD,
    ∴AO﹣AB=DO﹣CD;
    ∴BO=CO;
    又∵EO=FO,
    ∴四边形EBFC是平行四边形.
    本题考查的是平行四边形的判定与性质,掌握平行四边形的判定与性质是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据反比例函数的比例系数k的几何意义得到S△BOC=|k|=1,然后根据等底同高的三角形相等,得到S△AOC=S△BOC=1,即可求得△ABC的面积为1.
    【详解】
    解:∵BC⊥x轴,
    ∴S△BOC=|k|=1,
    ∵点A,B关于原点中心对称,
    ∴OA=OB,
    ∴S△AOC=S△BOC=1,
    ∴S△ABC=S△AOC+S△BOC=1,
    故答案为:1.
    本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
    20、1.
    【解析】
    解过点A作AM⊥GH于M,由正方形纸片折叠的性质得出∠EGH=∠EAB=∠ADC=90°,AE=EG,则EG⊥GH,∠EAG=∠EGA,由垂直于同一条直线的两直线平行得出AM∥EG,得出∠EGA=∠GAM,则∠EAG=∠GAM,得出AG平分∠DAM,则DG=GM,由AAS证得△ADG≌△AMG得出AD=AM=AB,由HL证得Rt△ABP≌Rt△AMP得出BP=MP,则△PGC的周长=CG+PG+PC=CG+MG+PM+PC=CG+DG+BP+PC=CD+CB=1.
    【详解】
    解:过点A作AM⊥GH于M,如图所示:
    ∵将正方形纸片折叠,使点A落在CD边上的G处,
    ∴∠EGH=∠EAB=∠ADC=90°,AE=EG,
    ∴EG⊥GH,∠EAG=∠EGA,
    ∴AM∥EG,
    ∴∠EGA=∠GAM,
    ∴∠EAG=∠GAM,
    ∴AG平分∠DAM,
    ∴DG=GM,
    在△ADG和△AMG中,
    ∴△ADG≌△AMG(AAS),
    ∴AD=AM=AB,
    在Rt△ABP和Rt△AMP中,
    ∴Rt△ABP≌Rt△AMP(HL),
    ∴BP=MP,
    ∴△PGC的周长=CG+PG+PC=CG+MG+PM+PC=CG+DG+BP+PC=CD+CB=8+8=1,
    故答案为:1.
    本题考查了折叠的性质、正方形的性质、角平分线的判定与性质、全等三角形的判定与性质等知识,熟练掌握折叠的性质,通过作辅助线构造全等三角形是解题的关键.
    21、
    【解析】
    作BM⊥FC于M,CN⊥AB于N,根据矩形的性质得到BM=CN,再根据直角三角形的性质求出AB,再根据勾股定理求出BC,结合图形即可求解.
    【详解】
    作BM⊥FC于M,CN⊥AB于N,
    ∵AB∥CF,
    ∴四边形BMCN是矩形,∠BCM=∠ABC=30°,
    ∴BM=CN,
    ∵∠ACB=90°,∠ABC=30°,
    ∴AB=2AC=4,
    由勾股定理得BC=
    ∴BM=CN=BC=
    由勾股定理得CM=
    ∵∠EDF=45°,∴DM=BM=
    ∴CD=CM-DM=
    此题主要考查矩形的判定与性质,解题的关键是熟知勾股定理、含30°的直角三角形及等腰直角三角形的性质.
    22、4.1.
    【解析】
    根据题意结合勾股定理得出折断处离地面的长度即可.
    【详解】
    解:
    设折断处离地面的高度OA是x尺,根据题意可得:
    x1+41=(10﹣x)1,
    解得:x=4.1,
    答:折断处离地面的高度OA是4.1尺.
    故答案为:4.1.
    本题主要考查了勾股定理的应用,在本题中理解题意,知道柱子折断后刚好构成一个直角三角形是解题的关键.
    23、x≤1
    【解析】
    分析:根据二次根式有意义的条件解答即可.
    详解:
    ∵二次根式有意义,被开方数为非负数,
    ∴1 -x≥0,
    解得x≤1.
    故答案为x≤1.
    点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)每台电冰箱的进价2000元,每台空调的进价1600元.
    (2)此时应购进电冰箱33台,则购进空调67台.
    【解析】
    试题分析:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元,根据:“用8000元购进电冰箱的数量与用6400元购进空调的数量相等”列分式方程求解可得;
    (2)设购进电冰箱x台,则购进空调(100﹣x)台,根据:总利润=冰箱每台利润×冰箱数量+空调每台利润×空调数量,列出函数解析式,结合x的范围和一次函数的性质可知最值情况.
    解:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元
    依题意得,,
    解得:m=2000,
    经检验,m=2000是原分式方程的解,
    ∴m=2000;
    ∴每台电冰箱的进价2000元,每台空调的进价1600元.
    (2)设购进电冰箱x台,则购进空调(100﹣x)台,
    根据题意得,总利润W=100x+150(100﹣x)=﹣50x+15000,
    ∵﹣50<0,
    ∴W随x的增大而减小,
    ∵33≤x≤40,
    ∴当x=33时,W有最大值,
    即此时应购进电冰箱33台,则购进空调67台.
    25、(1)
    (2)
    【解析】
    本题考查了等边三角形的性质和勾股定理.①中,运用等腰三角形的三线合一和勾股定理;②中,根据三角形的面积公式进行计算即可.
    26、 (1)见解析;(2)16.
    【解析】
    (1)根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可;
    (2)由勾股定理可求BC的长,即可求平行四边形ABCD的周长.
    【详解】
    证明:(1)四边形是平行四边形,
    ,,



    四边形是平行四边形.
    (2),.,

    平行四边形的周长
    本题考查了平行四边形的判定和性质,熟练运用平行四边形的性质是本题的关键.
    题号





    总分
    得分

    相关试卷

    2025届怒江市重点中学数学九年级第一学期开学检测模拟试题【含答案】:

    这是一份2025届怒江市重点中学数学九年级第一学期开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届南通市重点中学数学九上开学经典试题【含答案】:

    这是一份2025届南通市重点中学数学九上开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年漳州市重点中学数学九上开学经典模拟试题【含答案】:

    这是一份2024年漳州市重点中学数学九上开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map