![2025届南省郴州市九年级数学第一学期开学经典试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16239793/0-1728628877894/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届南省郴州市九年级数学第一学期开学经典试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16239793/0-1728628877922/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届南省郴州市九年级数学第一学期开学经典试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16239793/0-1728628877944/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届南省郴州市九年级数学第一学期开学经典试题【含答案】
展开
这是一份2025届南省郴州市九年级数学第一学期开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)用配方法解方程x2+3x+1=0,经过配方,得到( )
A.(x+)2=B.(x+)2=
C.(x+3)2=10D.(x+3)2=8
2、(4分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<1;②a>1;③当x<4时,y1<y2;④b<1.其中正确结论的个数是( )
A.4个B.3个C.2个D.1个
3、(4分)已知点(-4,y1),(2,y2)都在直线y=- x+2上,则y1 y2大小关系是( )
A.y1 >y2B.y1 =y2C.y1 2时,将(2,20),(4,36)代入y=kx+b中,
,解得:,
∴y=8x+4(x≥2).
当x=1时,y=10x=10,
当x=5时,y=44,
10×5-44=6(元),
故选C.
本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.
7、D
【解析】
根据合并同类项法则、同底数幂除法、积的乘方对各选项分析判断后利用排除法求解.
【详解】
A.应为x3+x3=2x3,故本选项错误;
B.应为a6÷a2=a6﹣2=a4,故本选项错误;
C.3a与5b不是同类项,不能合并,故本选项错误;
D.(﹣ab)3=﹣a3b3,正确.
故选D.
本题考查了合并同类项,同底数幂的除法,积的乘方的性质,熟练掌握运算性质并灵活运用是解题的关键,不是同类项的一定不能合并.
8、D
【解析】
根据中位线定理可证DE∥AC,DF∥BC,EF∥AB,即可得四边形ADEF,四边形DECF,四边形BDFE是平行四边形.即可判断各选项是否正确.
【详解】
连接DF
∵点D,E,F分别是AB,BC,AC的中点
∴DE∥AC,DF∥BC,EF∥AB
∴四边形ADEF,四边形DECF,四边形BDFE是平行四边形
∴△ADF≌△DEF,△BDE≌△DEF,△CEF≌△DEF
∴△DEF≌△ADF≌△BDE≌△CEF
∴S△ADF=S△BDE=S△DEF=S△CEF.
∴S△DEF=S△ABC.
故①②③说法正确
∵四边形ADEF的周长为2(AD+DE)
四边形BDFE的周长为2(BD+DF)
且AD=BD,DE≠DF,
∴四边形ADEF的周长≠四边形BDFE的周长
故④说法错误
故选:D.
本题考查了平行四边形的判定,三角形中位线定理,平行四边形的性质,熟练运用中位线定理解决问题是本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3
【解析】
由三角形中位线定理得到DF=BC;然后根据直角三角形斜边上的中线等于斜边的一半得到AE=BC,则DF=AE.
【详解】
∵在直角△ABC中,∠BAC=90°,D. F分别为AB、AC的中点,
∴DF是△ABC的中位线,
∴DF=BC.
又∵点E是直角△ABC斜边BC的中点,
∴AE=BC,
∵DF=3,
∴DF=AE=3.
故答案为3.
本题考查了三角形中位线定理和直角三角形斜边上的中线.熟记定理是解题的关键.
10、3
【解析】
利用平方差公式得到(m+n)(m-n)=6,然后把m-n=2代入计算即可.
【详解】
∵,
∴m+n=3.
11、1
【解析】
由菱形的性质可得AB=BC=1,∠DAB+∠ABC=180°,可得∠ABC=10°,可证△ABC是等边三角形,可得AC=1.
【详解】
如图,
∵四边形ABCD是菱形
∴AB=BC=1,∠DAB+∠ABC=180°
∴∠ABC=10°,且AB=BC
∴△ABC是等边三角形
∴AC=AB=1
故答案为:1
本题考查了菱形的性质,等边三角形的判定和性质,熟练运用菱形的性质是本题的关键.
12、
【解析】
根据平行四边形的性质及两点之间线段最短进行作答.
【详解】
由题知,四边形ABCD是平行四边形,所以BH=DH.要求HD+HE最小,即BH+HE最小,所以,连接B、E,得到最小值HD+HE=BE.过B点作BGCE交于点G,再结合题意,得到GE=3,BG=1,由勾股定理得,BE=.所以,HD+HE最小值为.
本题考查了平行四边形的性质及两点之间线段最短,熟练掌握平行四边形的性质及两点之间线段最短是本题解题关键.
13、22.
【解析】
由平行四边形的性质得出∠D=∠B=55°,由折叠的性质得:∠D'=∠D=55°,∠MAD'=∠DAM=24°,由三角形的外角性质求出∠AMN=79°,与三角形内角和定理求出∠AMD'=101°,即可得出∠NMD'的大小.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠D=∠B=55°,
由折叠的性质得:∠D'=∠D=55°,∠MAD'=∠DAM=24°,
∴∠AMN=∠D+∠DAM=55°+24°=79°,∠AMD'=180°-∠MAD'-∠D'=101°,
∴∠NMD'=101°-79°=22°;
故答案为:22.
本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AMN和∠AMD'是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)y=﹣x+1;(2)△BOD的面积=1.
【解析】
(1)先根据直线的方向判定一次函数解析式中k的符号,再根据直线经过点B(1,1),判断函数解析式即可;
(2)求出D点的坐标,根据三角形的面积公式即可得到结论.
【详解】
把x=1代入y=2x得y=2
∴直线经过点B(1,2)
设直线AB的解析式为:y=kx+b
∴
∴
∴该一次函数的解析式为y=﹣x+1;
(2)当y=0时,x=1
∴D(1,0)
∴OD=1
∴△BOD的面积=×1×2=1.
本题主要考查了两直线相交或平行问题,解题时注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
15、(1)2;(2).
【解析】
(1)把括号内通分化简,再把除法转化为乘法约分,然后把代入计算即可;
(2)两边都乘以x-2,化为整式方程求解,求出x的值后检验.
【详解】
(1)原式=
=
=
=
=,
当 时,
原式=;
(2),
两边都乘以x-2,得
3=2(x-2)-x,
解之得
x=7,
检验:当x=7时,x-2≠0,所以x=7是原方程的解.
本题考查了分式的化简求值,以及分式方程的解法,熟练掌握分式的运算法则及分式方程的求解步骤是解答本题的关键.
16、(1),见详解;(2)绕点顺时针旋转得到,见详解
【解析】
(1)根据三角形全等的判定即可得到答案;
(2)在全等的三角形中根据旋转的定义即可得到答案.
【详解】
解:.
证明:,为等边三角形
,
在和中
(2)绕点顺时针旋转得到.
本题考查旋转的性质,等边三角形的性质,三角形全等的判定,认真观察图形找到全等的三角形是解决问题的关键.
17、(1)见解析;(2)答案不唯一;(3)我觉得家庭月均用水量应该定为5吨
【解析】
(1)根据题中给出的50个数据,从中分别找出5.0<x≤6.5与 6.5<x≤8.0 的个数,进行划记,得到对应的频数,进而完成频数分布表和频数分布直方图;
(2)从直方图可以看出:居民月平均用水量大部分在2.0至6.5之间;居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;
居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.
(3)根据共有50个家庭,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而11+19=30,故家庭月均用水量应该定为5吨,即可得出答案.
【详解】
(1)(1)5.0<x≤6.5共有13个,则频数是13,
6.5<x≤8.0共有5个,则频数是5,
填表如下:
如图:
(2)从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;
③居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.
(3)因为在2.0至5.0之间的用户数为11+19=30,而30÷50=0.6,所以要使60%的家庭收费不受影响,我觉得家庭月均用水量应该定为5吨.
本题考查读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
18、(1)点E的坐标为(1,2);(2)点 P的坐标为(-1,6)或(5,-6).
【解析】
(1)把y=x+1与y=-2x+4联立组成方程组,解方程组求得x、y的值,即可求得点E的坐标;(2)先求得点A的坐标为(-1,0)、点D的坐标为(2,0),可得AD=3,根据△ADP的面积为9求得△ADP边AD上的高为6,可得点P的纵坐标为6,再分当点P在y轴的上方时和当点P在y轴的下方时两种情况求点P的坐标即可.
【详解】
(1)由题意得,,
解得,,
∴点E的坐标为(1,2);
(2)∵直线y=x+1与x交于点A,直线y=-2x+4与x交于点D,
∴A(-1,0),D(2,0),
∴AD=3,
∵△ADP的面积为9,
∴△ADP边AD上的高为6,
∴点P的纵坐标为6,
当点P在y轴的上方时,-2x+4=6,
解得x=-1,
∴P(-1,6);
当点P在y轴的下方时,-2x+4=-6,
解得x=5,
∴P(5,-6);
综上,当△ADP的面积为9时,点 P的坐标为(-1,6)或(5,-6).
本题考查了两直线的交点问题,熟知两条直线的交点坐标是这两条直线相对应的一次函数表达式所组成的二元一次方程组的解是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x=-1
【解析】
观察图象,根据图象与x轴的交点解答即可.
【详解】
∵一次函数y=kx+1的图象与x轴的交点坐标是(-1,0),
∴kx+1=0的解是x= -1.
故答案为:x= -1.
本题考查了一次函数与一元一次方程,解题的关键是根据交点坐标得出kx+1=0.
20、2
【解析】
根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.
【详解】
解:在Rt△BCE中,由勾股定理得,
CE===1.
∵BE=DE=3,AE=CE=1,
∴四边形ABCD是平行四边形.
四边形ABCD的面积为BC×BD=4×(3+3)=2.
故答案为2.
本题考查了平行四边形的判定与性质,关键是利用勾股定理得出CE的长,利用对角线互相平分的四边形是平行四边形,利用平行四边形的面积公式.
21、x>1
【解析】
分析:根据两直线的交点坐标和函数的图象即可求出答案.
详解:∵直线y1=kx+b与直线y2=mx交于点P(1,m),
∴不等式mx>kx+b的解集是x>1,
故答案为x>1.
点睛:解答本题的关键是熟练掌握图象在上方的部分对应的函数值大,图象在下方的部分对应的函数值小.
22、x<.
【解析】
先把点A(m,3)代入函数y=2x求出m的值,再根据函数图象即可直接得出结论.
【详解】
∵点A(m,3)在函数y=2x的图象上,
∴3=2m,解得m=,
∴A(,3),
由函数图象可知,当x<时,函数y=2x的图象在函数y=ax+5图象的下方,
∴不等式2x<ax+5的解集为:x<.
23、
【解析】
先根据正方形的性质和轴对称的性质找出使PF+PE取得最小值的点,然后根据勾股定理求解即可.
【详解】
∵正方形ABCD是轴对称图形,AC是一条对称轴,
∴点F关于AC的对称点在线段AD上,设为点G,连结EG与AC交于点P,则PF+PE的最小值为EG的长,
∵AB=4,AF=2,∴AG=AF=2,
∴EG=.
故答案为.
本题考查了正方形的性质,轴对称之最短路径问题及勾股定理,根据轴对称的性质确定出点P的位置是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)y甲=5x+60,y乙=4.5x+72;(2)当购买笔数大于24支时,乙种方式便宜;当购买笔数为24支时,甲乙两种方式所用钱数相同即甲乙两种方式都可以;当购买笔数大于4支而小于24支时,甲种方式便宜;(3)用甲种方法购买4个书包,用乙种方法购买8支笔最省钱.
【解析】分析:(1)根据购买的费用等于书包的费用+笔的费用就可以得出结论;
(2)由(1)的解析式,分情 y甲>y乙时,况y甲=y乙时和y甲<y乙时分别建立不等式和方程讨论就可以求出结论;
(3)由条件分析可以得出用一种方式购买选择甲商场求出费用,若两种方法都用 设用甲种方法购书包x个,则用乙种方法购书包(4﹣x)个总费用为y,再根据一次函数的性质就可以求出结论.
详解:(1)由题意,得:
y甲=20×4+5(x﹣4)=5x+60,y乙=90%(20×4+5x)=4.5x+72;
(2)由(1)可知 当 y甲>y乙时
5x+60>4.5x+72,解得:x>24,即当购买笔数大于24支时,乙种方式便宜.
当 y甲=y乙时,5x+60=4.5x+72
解得:x=24,即当购买笔数为24支时,甲乙两种方式所用钱数相同即甲乙两种方式都可以.
当 y甲<y乙时,5x+60<4.5x+72,解得:x<24,即当购买笔数大于4支而小于24支时,甲种方式便宜;
(3)用一种方法购买4个书包,12支笔时,由12<24,则选甲种方式 需支出
y=20×4+8×5=120(元)
若两种方法都用 设用甲种方法购书包x个,则用乙种方法购书包(4﹣x)个总费用
y=20 x+90%〔20(4﹣x)+5(12﹣x)〕(0<x≤4)
y=﹣2.5 x+126
由k=﹣2.5<0则y随x增大而减小,即当x=4时 y最小=116(元)
综上所述:用甲种方法购买4个书包,用乙种方法购买8支笔最省钱.
点睛:本题考查了一次函数的解析式的运用,分类讨论的运用及不等式和方程的解法的运用,一次函数的性质的运用,解答时先表示出两种购买方式的解析式是解答第二问的关键,解答第三问灵活运用一次函数的性质是难点.
25、详见解析.
【解析】
由四边形ABCD是平行四边形可得,CE∥AF,∠DAB=∠DCB,又AE、CF分别平分∠DAB、∠BCD,所以∠2=∠3,可证四边形AFCE是平行四边形.
【详解】
∵四边形ABCD是平行四边形,
∴CE∥AF,∠DAB=∠DCB,
∵AE、CF分别平分∠DAB、∠BCD,
∴∠2=∠3,
又∠3=∠CFB,
∴∠2=∠CFB,
∴AE∥CF,
又CE∥AF,
∴四边形AFCE是平行四边形.
26、见解析.
【解析】
根据∠ADB=∠CBD,可知AD∥BC,由题意DE⊥AC,BF⊥AC,可知∠AED=∠CFB=90°,因为DE=BF,所以证出△ADE≌△CBF(AAS),根据有一组对边平行且相等的四边形是平行四边形即可证出.
【详解】
∵∠ADB=∠CBD,
∴AD∥BC,
∴∠DAE=∠BCF,
∵DE⊥AC,BF⊥AC,
∴∠AED=∠CFB=90°,
又∵DE=BF,
∴△ADE≌△CBF(AAS),
∴AD=BC,
∴四边形ABCD是平行四边形.
本题主要考查了平行四边形的判定,熟知由一组对边平行且相等的四边形是平行四边形是解题关键.
题号
一
二
三
四
五
总分
得分
分组
划记
频数
2.0<x≤3.5
正正一
11
3.5<x≤5.0
19
5.0<x≤6.5
13
6.5<x≤8.0
正
5
8.0<x≤9.5
2
合计
50
相关试卷
这是一份2025届南省郴州市数学九上开学教学质量检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届广东省统考数学九年级第一学期开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届安徽省宿州九年级数学第一学期开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)