2025届内蒙古正镶白旗察汗淖中学九年级数学第一学期开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一次函数的图象过点(0,3),且与两坐标轴围成的三角形的面积为3,则这个一次函数的表达式为( )
A.y=1.5x+3B.y=-1.5x+3
C.y=1.5x+3或y=-1.5x+3D.y=1.5x-3或y=-1.5x-3
2、(4分)如图,在中,平分,交于点,平分,交于点,,,则长为( )
A.B.C.D.
3、(4分)下列图形是物理学中的力学、电学等器件的平面示意图,从左至右分别代表小车、音叉、凹透镜和砝码,其中是中心对称图形的是( )
A.B.C.D.
4、(4分)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD的值最小时,点P的坐标为( )
A.(﹣1,0)B.(﹣2,0)C.(﹣3,0)D.(﹣4,0)
5、(4分)已知点P(a+l,2a-3)关于x轴的对称点在第一象限,则a的取值范围是( )
A.B.C.D.
6、(4分)若分式方程有增根,则m等于( )
A.-3B.-2C.3D.2
7、(4分)在ABCD中,∠A:∠B:∠C:∠D的度数比值可能是( )
A.1:2:3:4B.1:2:2:1C.1:1:2:2D.2:1:2:1
8、(4分)如图圆柱的底面周长是,圆柱的高为,为圆柱上底面的直径,一只蚂蚁如果沿着圆柱的侧面从下底面点处爬到上底面点处,那么它爬行的最短路程为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)商店购进一批文具盒,进价每个4元,零售价每个6元,为促销决定打折销售,但利润率仍然不低于20%,那么该文具盒实际价格最多可打___________折销售
10、(4分)如图,正方形ABCD是出四个全等的角三角形围成的,若,,则EF的长为________。
11、(4分)观察分析下列数据:,则第17个数据是 _______ .
12、(4分)在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是________.
13、(4分)矩形、菱形和正方形的对角线都具有的性质是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平行四边形中,对角线、相交于点,是延长线上的点,且为等边三角形.
(1)四边形是菱形吗?请说明理由;
(2)若,试说明:四边形是正方形.
15、(8分)如图,在的正方形网格中,横、纵坐标均为整数的点叫格点.己知,,均在格点上.
(1)请建立平面直角坐标系,并直接写出点坐标;
(2)直接写出的长为 ;
(3)在图中仅用无刻度的直尺找出的中点:
第一步:找一个格点;
第二步:连接,交于点,即为的中点;
请按步骤完成作图,并写出点的坐标.
16、(8分)如图,四边形ABCD是平行四边形,对角线AC,BD相交于点O,且∠1=∠1.求证:四边形ABCD是矩形.
17、(10分)如图,方格纸中每个小方格都长为1个单位的正方形,已知学校位置坐标为A(1,2)。
(1)请在图中建立适当的平面直角坐标系;
(2)写出图书馆B位置的坐标。
18、(10分)随着生活水平的提高,人们对饮水质量的需求越来越高,我市某公司根据市场需求准备销售A、B两种型号的净水器,每台A型净水器比每台B型净水器进价多300元,用48000元购进A型净水器与用36000元购进B型净水器的数量相等.
(1)求每台A型、B型净水器的进价各是多少元?
(2)该公司计划购进A、B两种型号的净水器共400台进行销售,其中A型的台数不超过B型的台数,A型净水器每台售价1500元,B型净水器每台售价1100元,怎样安排进货才能使售完这400台净水器所获利润最大?最大利润是多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在中,,且把的面积三等分,那么_____.
20、(4分)分式当x __________时,分式的值为零.
21、(4分)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为_____.
22、(4分)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为 .
23、(4分)关于x的方程的一个根为1,则m的值为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知直线y=+1与x轴、y轴分别交于点A、B,以线AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90、点P(x、y)为线段BC上一个动点(点P不与B、C重合),设△OPA的面积为S。
(1)求点C的坐标;
(2)求S关于x的函数解析式,并写出x的的取值范围;
(3)△OPA的面积能于吗,如果能,求出此时点P坐标,如果不能,说明理由.
25、(10分)问题情境:在中,,点是的中点,以为角的顶点作.
感知易证:(1)如图1,当射线经过点时,交边于点.将从图1中的位置开始,绕点按逆时针方向旋转,使射线、始终分别交边,于点、,如图2所示,易证,则有.
操作探究:(2)如图2,与是否相似,若相似,请证明;若不相似,请说明理由;
拓展应用:(3)若,直接写出当(2)中的旋转角为多少度时,与相似.
26、(12分)某校八年级甲,乙两班各有名学生,为了解这两个班学生身体素质情况,进行了抽样调查.从这两个班各随机抽取名学生进行身体素质测试,测试成绩如下:
甲班
乙班
整理上面数据,得到如下统计表:
样本数据的平均数、众数.中位数如下表所示:
根据以上信息,解答下列问题:
(1)求表中的值
(2)表中的值为( )
(3)若规定测试成绩在分以上(含分)的学生身体素质为优秀,请估计乙班名学生中身体素质为优秀的学生的人数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先求出一次函数y=kx+b与x轴和y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.
【详解】
解:∵一次函数y=kx+b(k≠0)图象过点(0,3),
∴b=3,
令y=0,则x=-,
∵函数图象与两坐标轴围成的三角形面积为2,
∴×2×|-|=2,
即||=2,
解得:k=±1.5,
则函数的解析式是y=1.5x+3或y=-1.5x+3.
故选C.
本题考查一次函数图象上点的坐标特征和三角形的面积公式,有一定的综合性,注意点的坐标和线段长度的转化.
2、A
【解析】
先证明AB=AF,DC=DE,再根据EF=AF+DE﹣AD,求出AD,即可得出答案.
【详解】
∵四边形是平行四边形
∴,,∥
∵平分,平分
∴,
∴,
∴
∴
∴
故选A
本题考查了平行四边形的性质,考点涉及平行线性质以及等角对等边等知识点,熟练掌握平行四边形的性质是解答本题的关键.
3、C
【解析】
根据中心对称图形的定义,结合选项所给图形进行判断即可.
【详解】
解:A、不是中心对称图形,故本选项错误;
B、不是中心对称图形,故本选项错误;
C、是中心对称图形,故本选项正确;
D、不是中心对称图形,故本选项错误;
故选:C.
此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
4、B
【解析】
根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.
【详解】
作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图.
令y=x+4中x=0,则y=4,
∴点B的坐标为(0,4);
令y=x+4中y=0,则x+4=0,解得:x=﹣8,
∴点A的坐标为(﹣8,0).
∵点C、D分别为线段AB、OB的中点,
∴点C(﹣4,1),点D(0,1).
∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,﹣1).
设直线CD′的解析式为y=kx+b,
∵直线CD′过点C(﹣4,1),D′(0,﹣1),
∴,解得:,
∴直线CD′的解析式为y=﹣x﹣1.
令y=0,则0=﹣x﹣1,解得:x=﹣1,
∴点P的坐标为(﹣1,0).
故选:B.
本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是求出直线CD′的解析式.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标利用待定系数法求出函数解析式是关键.
5、B
【解析】
关于x轴对称的点的坐标,一元一次不等式组的应用.
【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,再根据各象限内的点的坐标的特点列出不等式组求解即可:
∵点P(a+1,2a-3)关于x轴的对称点在第一象限,∴点P在第四象限.
∴.
解不等式①得,a>-1,解不等式②得,a<,
所以,不等式组的解集是-1<a<.故选B.
6、B
【解析】
先去掉分母,再将增根x=1代入即可求出m的值.
【详解】
解,去分母得x-3=m
把增根x=1代入得m=1-3=-2
故选B.
此题主要考查分式方程的求解,解题的关键是熟知增根的含义.
7、D
【解析】
根据平行四边形的两组对角分别相等判定即可
【详解】
解:根据平行四边形的两组对角分别相等,可知D正确.
故选:D.
此题主要考查了平行四边形的性质,熟知平行四边形的两组对角分别相等这一性质是解题的关键.
8、C
【解析】
把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AB′,如图,由于AC=12,CB′=5,然后利用勾股定理计算出AB′即可.
【详解】
解:把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,则蚂蚁爬行的最短路径为AB′,如图,AC=12,CB′=5,
在Rt△ACB′,
所以它爬行的最短路程为13cm.
故选:C.
本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、8
【解析】
设该文具盒实际价格可打x折销售,根据利润率不低于20%列不等式进行求解即可得.
【详解】
设该文具盒实际价格可打x折销售,由题意得:
6×-4≥4×20%,
解得:x≥8,
故答案为8.
本题考查了一元一次不等式的应用,弄清题意,找准不等关系列出不等式是解题的关键.
10、
【解析】
根据全等三角形的性质得到BH=AE=5,得到EH=BE-BH=7,根据勾股定理计算即可.
【详解】
,
同理,HF=7,
故答案为.
本题考查了全等三角形的性质和勾股定理,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.
11、
【解析】
分析:将原数变形为:1×,2×,3×,4×…,根据规律可以得到答案.
详解:将原数变形为:1×,2×,3×,4×…,所以第17个数据是:17×=51.
故答案为:51.
点睛:本题考查了算术平方根,解题的关键是将所得二次根式变形,找到规律解答.
12、PA=PB=PC
【解析】
解:∵边AB的垂直平分线相交于P,
∴PA=PB,
∵边BC的垂直平分线相交于P,
∴PB=PC,
∴PA=PB=PC.
故答案为:PA=PB=PC.
13、对角线互相平分
【解析】
先逐一分析出矩形、菱形、正方形的对角的性质,再综合考虑矩形、菱形、正方形对角线的共同性质.
【详解】
解:因为矩形的对角线互相平分且相等,菱形的对角线互相平分且垂直且平分每一组对角,正方形的对角线具有矩形和菱形所有的性质,所有矩形、菱形和正方形的对角线都具有的性质是对角线互相平分.
故答案为对角线互相平分.
本题主要考查了矩形、菱形、正方形的性质,解题的关键是熟知三者对角线的性质.
三、解答题(本大题共5个小题,共48分)
14、(1)四边形为菱形,理由见解析;(2)见解析
【解析】
(1)根据“对角线互相垂直的平行四边形是菱形”即可求证.
(2)根据“有一个角是90°的菱形是正方形”即可求证.
【详解】
(1)四边形为菱形,理由:
在平行四边形中,,
是等边三角形.
,又、、、四点在一条直线上,.
平行四边形是菱形. (对角线互相垂直的平行四边形是菱形)
(2)由是等边三角形,,得到,,
..,
四边形是菱形,,,
四边形是正方形.(有一个角是90°的菱形是正方形)
本题考查了平行四边形的性质以及菱形、正方形的判定定理,熟练掌握相关性质定理是解答本题的关键.
15、(1)图见解析, ;(2);(3)图见解析,
【解析】
(1)根据,建立如图平面直角坐标系即可;
(2)利用勾股定理即可解决问题;
(3)构造平行四边形即可解决问题.
【详解】
解:(1)∵,
∴建立如图平面直角坐标系,
∴;
(2)AC==;
(3)如图,
∵AB=CD=,AD=BC=,
∴四边形ABCD是平行四边形,
∴点D即为所求,D(3,-1).
本题考查作图-复杂作图,平面直角坐标系,平行四边形都是性质和判定等知识,了解题的关键是灵活运用所学知识解决问题,属于中考常考题型
16、参见解析.
【解析】
试题分析:此题利用对角线相等的平行四边形是矩形的判定方法来判定四边形ABCD是矩形.
试题解析:在□ABCD中,应用平行四边形性质得到AO=CO,BO=DO,又 ∵∠2=∠2 ,∴BO=CO,∴AO=BO=CO=DO,∴AC=BD,∴□ABCD为矩形.
考点:2.矩形的判定;2.平行四边形性质.
17、(1)见解析;(2)(−3,−2);
【解析】
(1)利用点A的坐标画出直角坐标系;
(2)根据点的坐标的意义描出点B;
【详解】
(1)建立直角坐标系如图所示:
(2)图书馆(B)位置的坐标为(−3,−2);
故答案为:(−3,−2);
此题考查坐标确定位置,解题关键在于根据题意画出坐标系.
18、(1)每台A型净水器的进价为2元,每台B型净水器的进价为1元;(2)购进4台A型净水器,4台B型净水器,可使售完这400台净水器所获利润最大,最大利润是100000元.
【解析】
(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,根据数量=总价÷单价结合用48000元购进A型净水器与用36000元购进B型净水器的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设最大利润是W元,由总利润=单台利润×进货数量,即可得出W关于x的函数关系式,由A型的台数不超过B型的台数,可得出关于x的一元一次不等式,解之即可得出x的取值范围,再利用一次函数的性质即可解决最值问题.
【详解】
(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,依题意,得:
解得:x=1.
经检验,x=1是原方程的解,且符合题意,∴x+300=2.
答:每台A型净水器的进价为2元,每台B型净水器的进价为1元.
(2)设最大利润是W元.
∵购进x台A型净水器,∴购进(400﹣x)台B型净水器,依题意,得:
W=(1500﹣2)x+(1100﹣1)(400﹣x)=100x+3.
∵A型的台数不超过B型的台数,∴x≤400﹣x,解得:x≤4.
∵100>0,∴W随x值的增大而增大,∴当x=4时,W取得最大值,最大值为100000元.
答:购进4台A型净水器,4台B型净水器,可使售完这400台净水器所获利润最大,最大利润是100000元.
本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量之间的关系,找出W关于x的函数关系式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据相似三角形的判定及其性质,求出线段DE,MN,BC之间的数量关系,即可解决问题.
【详解】
将的面积三等分,
设的面积分别为
,
,
,
,
故答案为:.
本题考查相似三角形的性质,熟练掌握相似三角形的面积比等于相似比的平方是解决问题的关键.
20、= -3
【解析】
根据分子为0,分母不为0时分式的值为0来解答.
【详解】
根据题意得:
且x-3 0
解得:x= -3
故答案为:= -3.
本题考查的是分式值为0的条件,易错点是只考虑了分子为0而没有考虑同时分母应不为0.
21、1
【解析】
解不等式组,得到不等式组的解集,根据整数解的个数判断a的取值范围,解分式方程,用含有a的式子表示y,根据解的非负性求出a的取值范围,确定符合条件的整数a,相加即可.
【详解】
解:,
解①得,x<5;
解②得,
∴不等式组的解集为;
∵不等式有且只有四个整数解,
∴,
解得,﹣1<a≤1;
解分式方程得,y=1﹣a;
∵方程的解为非负数,
∴1﹣a≥0;即a≤1;
综上可知,﹣1<a≤1,
∵a是整数,
∴a=﹣1,0,1,1;
∴﹣1+0+1+1=1
故答案为1.
本题考查了解一元一次不等式组,分式方程,根据题目条件确定a的取值范围,进一步确定符合条件的整数a,相加求和即可
22、1或1.
【解析】
试题分析:分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,
①当30度角是等腰三角形的顶角时,如图1中,
当∠A=30°,AB=AC时,设AB=AC=a,
作BD⊥AC于D,∵∠A=30°,
∴BD=AB=a,
∴•a•a=5,
∴a2=1,
∴△ABC的腰长为边的正方形的面积为1.
②当30度角是底角时,如图2中,
当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,
∵AB=AC,
∴∠ABC=∠C=30°,
∴∠BAC=11°,∠BAD=60°,
在RT△ABD中,∵∠D=90°,∠BAD=60°,
∴BD=a,
∴•a•a=5,
∴a2=1,
∴△ABC的腰长为边的正方形的面积为1.
考点:正方形的性质;等腰三角形的性质.
23、1
【解析】
试题分析:把x=1代入方程得:1-2m+m=0,解得m=1.
考点:一元二次方程的根.
二、解答题(本大题共3个小题,共30分)
24、(1)(4,3);(2)S=, 0<x<4;(3)不存在.
【解析】
(1)直线y=+1与x轴、y轴分别交于点A、B,可得点A、B的坐标,过点C作CH⊥x轴于点H,如图1,易证△AOB≌△CHA,从而得到AH=OB、CH=AO,就可得到点C的坐标;
(2)易求直线BC解析式,过P点作PG垂直x轴,由△OPA的面积=即可求出S关于x的函数解析式.
(3)当S=求出对应的x即可.
【详解】
解:(1)∵直线y=+1与x轴、y轴分别交于点A、B,
∴A点(3,0),B点为(0,1),
如图:过点C作CH⊥x轴于点H,
则∠AHC=90°.
∴∠AOB=∠BAC=∠AHC=90°,
∴∠OAB=180°-90°-∠HAC=90°-∠HAC=∠HCA.
在△AOB和△CHA中,
,
∴△AOB≌△CHA(AAS),
∴AO=CH=3,OB=HA=1,
∴OH=OA+AH=4
∴点C的坐标为(4,3);
(2)设直线BC解析式为y=kx+b,由B(0,1),C(4,3)得:
,解得,
∴直线BC解析式为,
过P点作PG垂直x轴,△OPA的面积=,
∵PG=,OA=3,
∴S==;
点P(x、y)为线段BC上一个动点(点P不与B、C重合),
∴0<x<4.
∴S关于x的函数解析式为S=, x的的取值范围是0<x<4;
(3)当s=时,即,解得x=4,不合题意,故P点不存在.
本题主要考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、勾股定理、三角形的面积公式等知识,构造全等三角形是解决第(1)小题的关键.
25、(1)CD;(2)△BDF∽△DEF,理由见详解;(3)10°或40°.
【解析】
(1)如图2,根据∠EDF=∠B及三角形外角性质可得∠BFD=∠CDE,再根据∠B=∠C即可得到△BFD∽△CDE解决问题.
(2)如图2,由(2)得△BFD∽△CDE,则有,由D是BC的中点可得.再根据∠B=∠EDF即可得到△BDF∽△DEF.
(3)由∠B=∠C=50°可得∠BAC=80°,AB=AC,再由BD=CD可得AD⊥BC.若△DEF与△ABC相似,由△BDF∽△DEF可得△BDF与△ABC相似,从而得到∠BDF=∠BAC=80°,或∠BDF=∠C=50°,即可解决问题.
【详解】
解:(1)如图2,
∵AB=AC
∴∠B=∠C,
∵∠FDC是△BFD的一个外角,
∴∠FDC=∠B+∠BFD.
∵∠FDC=∠FDE+∠EDC,∠EDF=∠B,
∴∠BFD=∠CDE.
∵∠B=∠C,
∴△BFD∽△CDE;
∴.
(2)如图2,结论:△BDF∽△DEF.
理由:由(1)得.
∵D是BC的中点,
∴BD=CD,
∴,
又∵∠B=∠EDF,
∴△BDF∽△DEF.
(3)连接AD,如图3,
∵∠B=∠C=50°,
∴∠BAC=80°,AB=AC.
∵BD=CD,
∴AD⊥BC.
若△DEF与△ABC相似,
∵△BDF∽△DEF,
∴△BDF与△ABC相似,
∴∠BDF=∠BAC=80°,或∠BDF=∠C=50°,
∴∠ADF=90°﹣80°=10°,或∠ADF=90°﹣50°=40°,
∴当(2)中的旋转角为10°或40°时,△DEF与△ABC相似.
本题属于相似形综合题,主要考查了相似三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质、三角形内角和定理等知识,解题的关键是正确寻找相似三角形的判定条件,属于中考常考题型.
26、(1)72;(2)70;(3)20.
【解析】
(1) 利用平均数的公式,可以求出平均数m;
(2)由众数的概念可得乙班的众数n的值是70;
(3)用总人数乘以后两组数的频率之和即可得出答案.
【详解】
(1)
的值为.
(2)整理乙班数据可知70出现的次数最多,为三次,则乙班的众数n=
(3)(人)
答:乙班名学生中身体素质为优秀的学生约为人.
此题考查了频率分布直方图、频率分布表、平均数、众数,关键是读懂频数分布直方图和统计表,能获取有关信息,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
题号
一
二
三
四
五
总分
得分
内蒙古锡林郭勒盟正镶白旗察汗淖中学2023-2024学年九年级数学第一学期期末学业水平测试模拟试题含答案: 这是一份内蒙古锡林郭勒盟正镶白旗察汗淖中学2023-2024学年九年级数学第一学期期末学业水平测试模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列四对图形中,是相似图形的是,下列各组中的四条线段成比例的是等内容,欢迎下载使用。
内蒙古正镶白旗察汗淖中学2023-2024学年九上数学期末综合测试试题含答案: 这是一份内蒙古正镶白旗察汗淖中学2023-2024学年九上数学期末综合测试试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如图,斜面AC的坡度等内容,欢迎下载使用。
内蒙古正镶白旗察汗淖中学2023-2024学年数学八上期末质量跟踪监视试题含答案: 这是一份内蒙古正镶白旗察汗淖中学2023-2024学年数学八上期末质量跟踪监视试题含答案,共7页。试卷主要包含了计算,若,则等内容,欢迎下载使用。