2025届宁夏石嘴山市平罗四中学九上数学开学学业质量监测模拟试题【含答案】
展开
这是一份2025届宁夏石嘴山市平罗四中学九上数学开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若关于x的分式方程的解为非负数,则a的取值范围是( )
A.a≥1B.a>1C.a≥1且a≠4D.a>1且a≠4
2、(4分)如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为( )
A.–B.C.–2D.2
3、(4分)二次根式中,字母a的取值范围是( )
A.a<﹣B.a>﹣C.aD.a
4、(4分)有下列说法:①平行四边形既是中心对称图形,又是轴对称图形;②正方形有四条对称轴;③平行四边形相邻两个内角的和等于;④菱形的面积计算公式,除了“底×高”之外,还有“两对角线之积”;⑤矩形和菱形均是特殊的平行四边形,因此具有平行四边形的所有性质.其中正确的结论的个数有( )
A.1B.2C.3D.4
5、(4分)如图所示,在矩形中,,,矩形内部有一动点满足,则点到,两点的距离之和的最小值为( ).
A.B.C.D.
6、(4分)在平面直角坐标系中,将点先向左平移个单位长度,再向下平移个单位长度,则平移后得到的点是( )
A.B.C.D.
7、(4分)关于的一次函数的图象可能是( )
A.
B.
C.
D.
8、(4分)方程 x2 x 的解是( )
A.x 1B.x1 1 , x2 0
C.x 0D.x1 1 , x2 0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)直线y=﹣2x﹣1向上平移3个单位,再向左平移2个单位,得到的直线是_____.
10、(4分)已知,则____.
11、(4分)使代数式有意义的的取值范围是________.
12、(4分)用科学记数法表示______.
13、(4分)如图,D、E分别是AC和AB上的点,AD=DC=4,DE=3,DE∥BC,∠C=90°,将△ADE沿着AB边向右平移,当点D落在BC上时,平移的距离为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,在中,的平分线交于点,的平分线交于点,交于点.
求证:.
15、(8分)已知:如图1,Rt△ABC中,∠BAC=90°,点D是线段AC的中点,连接BD并延长至点E,使BE=2BD.连接AE,CE.
(1)求证:四边形ABCE是平行四边形;
(2)如图2所示,将三角板顶点M放在AE边上,两条直角边分别过点B和点C,若∠MEC=∠EMC,BM交AC于点N.求证:△ABN≌△MCN.
16、(8分)下表是某网络公司员工月收人情况表.
(1)求此公司员工月收人的中位数;
(2)小张求出这个公司员工月收人平均数为元,若用所求平均数反映公司全体员工月收人水平,合适吗?若不合适,用什么数据更好?
17、(10分)如图,矩形ABCD中,对角线AC与BD相交于点O.
(1)写出与相反的向量______;
(2)填空:++=______;
(3)求作:+(保留作图痕迹,不要求写作法).
18、(10分)骑自行车旅行越来越受到人们的喜爱,顺风车行经营的型车2017年7月份销售额为万元,今年经过改造升级后,型车每辆的销售价比去年增加元,若今年7月份与去年7月份卖出的型车数量相同,则今年7月份型车销售总额将比去年7月份销售总额增加.求今年7月份顺风车行型车每辆的销售价格.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是 ______
20、(4分)不等式2x-1>x解集是_________.
21、(4分)如图,在正方形的外侧,作等边三角形,则为__________.
22、(4分)为参加学校举办的“诗意校园·致远方”朗诵艺术大赛,“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90分,方差是2;小强五次成绩的平均数也是90分,方差是14.8,则小明和小强的成绩中,__________的成绩更稳定.
23、(4分)过某矩形的两个相对的顶点作平行线,再沿着平行线剪下两个直角三角形,剩余的图形为如图所示的▱ABCD,AB=4,BC=6,∠ABC=60°,则原来矩形的面积是__.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,矩形ABCD中,AB=6,BC=8,点E是射线CB上的一个动点,把△DCE沿DE折叠,点C的对应点为C'.
(1)若点C'刚好落在对角线BD上时,BC'= ;
(2)当BC'∥DE时,求CE的长;(写出计算过程)
(3)若点C'刚好落在线段AD的垂直平分线上时,求CE的长.
25、(10分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)被调查的学生共有 人,并补全条形统计图;
(2)在扇形统计图中,m= ,n= ,表示区域C的圆心角为 度;
(3)全校学生中喜欢篮球的人数大约有多少?
26、(12分)如图1,在△ABC中,AB=BC=5,AC=6,△ABC沿BC方向向右平移得△DCE,A、C对应点分别是D、E.AC与BD相交于点O.
(1)将射线BD绕B点顺时针旋转,且与DC,DE分别相交于F,G,CH∥BG交DE于H,当DF=CF时,求DG的长;
(2)如图2,将直线BD绕点O逆时针旋转,与线段AD,BC分别相交于点Q,P.设OQ=x,四边形ABPQ的周长为y,求y与x之间的函数关系式,并求y的最小值.
(3)在(2)中PQ的旋转过程中,△AOQ是否构成等腰三角形?若能构成等腰三角形,求出此时PQ的长?若不能,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为1求出a的范围即可.
解:去分母得:2(2x﹣a)=x﹣2,
解得:x=,
由题意得:≥1且≠2,
解得:a≥1且a≠4,
故选C.
点睛:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为1.
2、A
【解析】
【分析】根据已知可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k.
【详解】∵A(-2,0),B(0,1),
∴OA=2,OB=1,
∵四边形OACB是矩形,
∴BC=OA=2,AC=OB=1,
∵点C在第二象限,∴C点坐标为(-2,1),
∵正比例函数y=kx的图像经过点C,
∴-2k=1,
∴k=-,
故选A.
【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C的坐标是解题的关键.
3、B
【解析】
根据二次根式以及分式有意义的条件即可解答.
【详解】
根据题意知2a+1>0,解得:a>﹣,故选B.
本题考查二次根式有意义的条件,解题的关键是正确理解二次根式与分式有意义的条件,本题属于基础题型.
4、C
【解析】
根据特殊平行四边形的性质即可判断.
【详解】
①平行四边形既是中心对称图形,不是轴对称图形,故错误;②正方形有四条对称轴,正确;③平行四边形相邻两个内角的和等于,正确;④菱形的面积计算公式,除了“底×高”之外,还有“两对角线之积”,故错误;⑤矩形和菱形均是特殊的平行四边形,因此具有平行四边形的所有性质,正确.
故②③⑤正确,选C
此题主要考查特殊平行四边形的性质,解题的关键是熟知特殊平行四边形的特点与性质.
5、D
【解析】
首先由,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.
【详解】
解:设△ABP中AB边上的高是h.
∵,
∴AB•h=AB•AD,
∴h=AD=2,
∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,BE,则BE的长就是所求的最短距离.
在Rt△ABE中,∵AB=4,AE=2+2=4,
∴BE=,
即PA+PB的最小值为.
故选D.
本题考查了轴对称−最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.
6、A
【解析】
根据向左平移横坐标减,向下平移纵坐标减进行解答即可.
【详解】
解:将点先向左平移个单位长度得,再向下平移个单位长度得.
故选A.
本题主要考查点坐标的平移规律:左减右加纵不变,上加下减横不变.
7、B
【解析】
分析:根据一次函数图象与系数的关系逐项分析即可,对于y=kx+b,当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.
详解:A.由函数的增减性得k0,二者矛盾,故不符合题意;
B.由函数的增减性得k>0,由图像与y轴的交点得k>0,二者一致,故符合题意;
C.由函数的增减性得k>0,由图像与y轴的交点得k0,由图像与y轴的交点得k=0,二者矛盾,故不符合题意;
故选B.
点睛: 本题考查了一次函数图象与系数的关系,熟练掌握一次函数图象与系数的关系是解答本题的关键.
8、B
【解析】
先变形得一元二次方程的一般形式,再用分解因式法解方程即可.
【详解】
解:移项,得x2-x=0,
原方程即为,
所以,x=0或x-1=0,
所以x1 1 , x2 0.
故选B.
本题考查了一元二次方程的解法,熟知一元二次方程的四种解法(完全开平方法、配方法、公式法和分解因式法)并能根据方程的特点灵活应用是求解的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=﹣2x﹣2
【解析】
根据“左加右减,上加下减”的平移规律即可求解.
【详解】
解:直线先向上平移3个单位,再向左平移2个单位得到直线,即.
故答案为.
本题考查图形的平移变换和函数解析式之间的关系.掌握平移规律“左加右减,上加下减”是解题的关键.
10、1
【解析】
先求出x的值,然后提取公因式xy分解因式,再把数值代入得出答案.
【详解】
解:∵,
∴x=-5
∴xy(x+y)
=-5×3×(-2)
=1.
此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.
11、x≥﹣1.
【解析】
根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.
【详解】
解:由题意得,1+x≥0,
解得x≥-1.
故答案为x≥-1.
本题考查二次根式的意义和性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
12、
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值1
【解析】
将不等式未知项移项到不等式左边,常数项移项到方程右边,合并后将x的系数化为1,即可求出原不等式的解集.
【详解】
解:2x-1>x,
移项得:2x-x>1,
合并得:x>1,
则原不等式的解集为x>1.
故答案为:x>1
此题考查了一元一次不等式的解法,解一元一次不等式的步骤为:去分母,去括号,移项,合并同类项,将x的系数化为1求出解集.
21、15
【解析】
分析:根据等边三角形的性质及正方形的性质可得到AB=AE,从而可求得∠BAE的度数,则可求∠AEB的度数.
详解:∵四边形是正方形,
∴,,
又∵是正三角形,
∴,,
∴,
∴为等腰三角形,,
∴.
故答案为:15.
点睛:主要考查了正方形和等边三角形的特殊性质,关键是根据等腰三角形的性质得到相等的角.
22、小明
【解析】
在平均数相等的前提下,方差或标准差越小,说明数据越稳定,结合题意可知,只需比较小明、小强两人成绩的方差即可得出答案.
【详解】
∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8;
∴平均成绩一样,小明的方差小,则小明的成绩稳定.
故选A.
本题考查方差的实际应用,解题的关键是掌握方差的使用.
23、16或21
【解析】
分两种情况,由含30°角的直角三角形的性质求出原来矩形的长和宽,即可得出面积.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD=BC=6,CD=AB=4,
分两种情况:
①四边形BEDF是原来的矩形,如图1所示:
则∠E=∠EBF=90°,
∴∠ABE=90°﹣∠ABC=30°,
∴AE=AB=2,BE=AE=2,
∴DE=AE+AD=8,
∴矩形BEDF的面积=BE×DE=2×8=16;
②四边形BGDH是原来的矩形,如图2所示:
同①得:CH=BC=3,BH=CH=3
∴DH=CH+CD=7,
∴矩形BGDH的面积=BH×DH=3×7=21;
综上所述,原来矩形的面积为16或21;
故答案为:16或21.
本题考查了矩形的性质、平行四边形的性质、含30°角的直角三角形的性质,熟练掌握矩形的性质和平行四边形的性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)4(2)4(3)CE的长为或
【解析】
【分析】(1)根据∠C=90°,BC=8,可得Rt△BCD中,BD=10,据此可得BC′=10-6=4;
(2)由折叠得,∠CED=∠C′ED,根据BC′∥DE,可得∠EC′B=∠C′ED,∠CED=∠C′BE,进而得到∠EC′B=∠C′EB,据此可得BE=C′E=EC=4;
(3)作AD的垂直平分线,交AD于点M,交BC于点N,分两种情况讨论:①当点C′在矩形内部时;②当点C′在矩形外部时,分别根据勾股定理,列出关于x的方程进行求解即可.
【详解】(1)如图1,由折叠可得DC'=DC=6,
∵∠C=90°,BC=8,
∴Rt△BCD中,BD=10,
∴BC′=10-6=4,
故答案为4;
(2)如图2,由折叠得,∠CED=∠C′ED,
∵BC′∥DE,
∴∠EC′B=∠C′ED,∠CED=∠C′BE,
∴∠EC′B=∠C′EB,
∴BE=C′E=EC=4;
(3)作AD的垂直平分线,交AD于点M,交BC于点N,分两种情况讨论:
①两点C’在矩形内部时,如图3,
∵点C’在AD的垂直平分线上,
∴DM=4.
∵DC’=DC=6,
∴由勾股定理,得,
,
设则,
,
,
解得,即;
②当点在矩形外部时,如图4,
∵点在AD的垂直平分线上,
∴DM=4,
,
∴由勾股定理,得,
,
设则,
,
,
解得,即 ,
综上所述,CE的长为或.
【点睛】本题属于四边形综合题,主要考查了折叠的性质,矩形的性质,垂直平分线的性质以及勾股定理的综合应用.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解题时,常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
25、(1)学生总数100人,跳绳40人,条形统计图见解析;(2)144°;(3)200人.
【解析】
(1)用B组频数除以其所占的百分比即可求得样本容量;
(2)用A组人数除以总人数即可求得m值,用D组人数除以总人数即可求得n值;
(3)用总人数乘以D类所占的百分比即可求得全校喜欢篮球的人数;
【详解】
解:(1)观察统计图知:喜欢乒乓球的有20人,占20%,
故被调查的学生总数有20÷20%=100人,
喜欢跳绳的有100﹣30﹣20﹣10=40人,
条形统计图为:
(2)∵A组有30人,D组有10人,共有100人,
∴A组所占的百分比为:30%,D组所占的百分比为10%,
∴m=30,n=10;
表示区域C的圆心角为×360°=144°;
(3)∵全校共有2000人,喜欢篮球的占10%,
∴喜欢篮球的有2000×10%=200人.
考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
26、(1)1;(1)y=1x+10(≤x≤4),当x=时,y有最小值,最小值为;(3)能,满足条件的PQ的值为:或2或3.
【解析】
(1)证明DG=GH=EH即可解决问题.
(1)如图1中,作AH⊥BC于H.解直角三角形求出AH,可得OQ的最小值,证明△AOQ≌△COP(ASA),推出AQ=PC,推出y=AQ+AB+BP+PC+PQ=AB+BC+PQ=10+1x(≤x≤4).根据一次函数的性质求出最值即可.
(3)分三种情形:①当AQ=AO=3时,作OH⊥AD于H.②当点Q是AD的中点时.③当OA=OQ=3时,分别求解即可.
【详解】
解:(1)如图中,
∵DF=FC,CH∥FG,
∴DG=GH,
∵BC=CE,CH∥BG,
∴GH=HE,
∴DG=GH=HE,
∴DG=DE=AC=1.
(1)如图1中,作AH⊥BC于H.
∵AB∥CD,AB=CD,
∴四边形ABCD是平行四边形,
∵AB=BC,
∴四边形ABCD是菱形,
∴AC⊥BD,
∴OA=OC=3,OB=OD==4,
∴,
∴AH=,
∵AQ∥PC,
∴∠QAO=∠PCO,
∵OA=OC,∠AOQ=∠COP,
∴△AOQ≌△COP(ASA),
∴AQ=PC,
∴y=AQ+AB+BP+PC+PQ=AB+BC+PQ=10+1x(≤x≤4).
∴y=1x+10(≤x≤4).
当x=时,y有最小值,最小值为.
(3)能;
如图3中,
分三种情形:①当AQ=AO=3时,作OH⊥AD于H.
易知OH=,
∴AH==,
∴HQ=,
∴OQ=,
∴PQ=1OQ=.
②当点Q是AD的中点时,AQ=OQ=DQ=,
∴PQ=1OQ=2.
③当OA=OQ=3时,PQ=1OQ=3.
综上所述,满足条件的PQ的值为:或2或3.
本题属于四边形综合题,考查了平移变换,菱形的判定和性质,解直角三角形,等腰三角形的判定和性质,一次函数的性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考常考题型.
题号
一
二
三
四
五
总分
得分
月收入(元)
人数
相关试卷
这是一份2025届宁夏石嘴山市平罗县数学九年级第一学期开学复习检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年甘肃省会师中学九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年宁夏石嘴山市第三中学九上数学开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。