终身会员
搜索
    上传资料 赚现金

    2025届山东省德州市齐河县九上数学开学统考模拟试题【含答案】

    立即下载
    加入资料篮
    2025届山东省德州市齐河县九上数学开学统考模拟试题【含答案】第1页
    2025届山东省德州市齐河县九上数学开学统考模拟试题【含答案】第2页
    2025届山东省德州市齐河县九上数学开学统考模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届山东省德州市齐河县九上数学开学统考模拟试题【含答案】

    展开

    这是一份2025届山东省德州市齐河县九上数学开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如果关于的一元二次方程有实数根,那么的取值范围是( )
    A.B.C.D.且
    2、(4分)下列事件中,属于随机事件的是( )
    A.抛出的篮球往下落B.在只有白球的袋子里摸出一个红球
    C.购买张彩票,中一等奖D.地球绕太阳公转
    3、(4分)下列函数解析式中不是一次函数的是( )
    A.B.C.D.
    4、(4分)菱形的对角线相交于点,若,菱形的周长为,则对角线的长为( )
    A.B.C.8D.
    5、(4分)如图所示,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CG,CF,则下列结论不一定正确的是( )
    A.△CDF≌△EBC
    B.∠CDF=∠EAF
    C.CG⊥AE
    D.△ECF是等边三角形
    6、(4分)已知反比例函数y=-,下列结论中不正确的是( )
    A.图象经过点(3,-2)B.图象在第二、四象限
    C.当x>0时,y随着x的增大而增大D.当x<0时,y随着x的增大而减小
    7、(4分)如图,在正方形中,在边上,在边上,且,过点作,交于点,若,,则的长为( )
    A.10B.11C.12D.13
    8、(4分)某校有15名同学参加区数学竞赛.已知有8名同学获奖,他们的竞赛得分均不相同.若知道某位同学的得分.要判断他能否获奖,在下列15名同学成绩的统计量中,只需知道( )
    A.方差B.平均数C.众数D.中位数
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若因式分解:__________.
    10、(4分)分解因式:=______.
    11、(4分)一次函数的图像与两坐标轴围成的三角形的面积是_________.
    12、(4分)如图,点,是的边,上的点,已知,,分别是,,中点,连接BE,FH,若BD=8,CE=6,,∠FGH=90°,则FH长为_______.
    13、(4分)计算:(2+)(2-)=_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:
    (1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
    (2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;
    (3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.
    15、(8分)由于受到手机更新换代的影响,某手机店经销的甲型号手机二月份售价比一月份售价每台降价500元.如果卖出相同数量的甲型号手机,那么一月份销售额为9万元,二月份销售额只有8万元.
    (1)一月份甲型号手机每台售价为多少元?
    (2)为了提高利润,该店计划三月份加入乙型号手机销售,已知甲型号每台进价为3500元,乙型号每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?
    16、(8分)如图,在长方形中,为平面直角坐标系的原点,点在轴上,点在轴上,点在第一象限内,点从原点出发,以每秒个单位长度的速度沿着的路线移动(即沿着长方形的边移动一周).
    (1)分别求出,两点的坐标;
    (2)当点移动了秒时,求出点的坐标;
    (3)在移动过程中,当三角形的面积是时,求满足条件的点的坐标及相应的点移动的时间.
    17、(10分)已知:如图,在△ABC中,∠A=120°,AB=4,AC=2.求BC边的长.
    18、(10分)如图,在菱形ABCD中,∠ABC=120°,AB=4,E为对角线AC上的动点(点E不与A,C重合),连接BE,将射线EB绕点E逆时针旋转120°后交射线AD于点F.
    (1)如图1,当AE=AF时,求∠AEB的度数;
    (2)如图2,分别过点B,F作EF,BE的平行线,且两直线相交于点G.
    ①试探究四边形BGFE的形状,并求出四边形BGFE的周长的最小值;
    ②连接AG,设CE=x,AG=y,请直接写出y与x之间满足的关系式,不必写出求解过程.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图中的螺旋由一系列直角三角形组成,则第2019个三角形的面积为_______.
    20、(4分)如图,Rt△ABC中,∠BAC=90°,AB=AC,将△ABC绕点C顺时针旋转40°,得到△,与AB相交于点D,连接,则∠的度数是________.
    21、(4分)如图,在⊙O中,AC为直径,过点O作OD⊥AB于点E,交⊙O于点D,连接BC,若AB=,ED=,则BC=_____.
    22、(4分)已知x=+5,则代数式(x﹣3)2﹣4(x﹣3)+4的值是_____.
    23、(4分)函数y=kx与y=6–x的图像如图所示,则k=________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图所示,点P的坐标为(1,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.
    (1)写出点Q的坐标是________;
    (2)若把点Q向右平移个单位长度,向下平移个单位长度后,得到的点落在第四象限,求的取值范围;
    (3)在(2)条件下,当取何值,代数式取得最小值.
    25、(10分)解方程:=-.
    26、(12分)某服装店用 6000 元购进一批衬衫,以 60 元/件的价格出售,很快售完,然后又用 13500元购进同款衬衫,购进数量是第一次的 2 倍,购进的单价比上一次每件多 5 元,服装店 仍按原售价 60 元/件出售,并且全部售完.
    (1)该服装店第一次购进衬衫多少件?
    (2)将该服装店两次购进衬衫看作一笔生意,那么这笔生意是盈利还是亏损?求出盈利(或 亏损)多少元?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    利用一元二次方程的定义和判别式的意义得到k≠0且△=(-3)2-4×k×(-1)≥0,即可得出答案.
    【详解】
    解:方程为一元二次方程,
    .
    方程有实数的解,

    .
    综合得且.
    本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
    2、C
    【解析】
    随机事件就是可能发生,也可能不发生的事件,根据定义即可判断.
    【详解】
    A. 抛出的篮球会落下是必然事件,故本选项错误;
    B. 从装有白球的袋里摸出红球,是不可能事件,故本选项错误;
    C.购买10张彩票,中一等奖是随机事件,故本选正确。
    D. 地球绕太阳公转,是必然事件,故本选项错误;
    故选:C.
    本题考查随机事件,熟练掌握随机事件的定义是解题关键.
    3、C
    【解析】
    根据一次函数的定义,可得答案.
    【详解】
    A、是一次函数,故A正确;
    B、是一次函数,故B正确;
    C、是二次函数,故C错误;
    D、是一次函数,故D正确;
    故选:C.
    本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
    4、C
    【解析】
    根据菱形周长可以计算AB,已知AC则可求AO;根据菱形性质可知:菱形对角线互相垂直;利用勾股定理可求BO,进而求出BD.
    【详解】
    解:如图:∵四边形是菱形
    ∴ , ,⊥
    ∵菱形的周长为



    根据勾股定理,

    本题考查了菱形性质的应用,难度较小,熟练掌握菱形的性质是解答本题的关键.
    5、C
    【解析】
    A.在平行四边形ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,
    ∵△ABE、△ADF都是等边三角形,
    ∴AD=DF,AB=EB,∠ADF=∠ABE=60°,
    ∴DF=BC,CD=BC,
    ∴∠CDF=360°-∠ADC-60°=300°-∠ADC,
    ∠EBC=360°-∠ABC-60°=300°-∠ABC,
    ∴∠CDF=∠EBC,
    在△CDF和△EBC中,
    DF=BC,
    ∠CDF=∠EBC,
    CD=EB,
    ∴△CDF≌△EBC(SAS),故A正确;
    B.在平行四边形ABCD中,∠DAB=180°-∠ADC,
    ∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,
    ∴∠CDF=∠EAF,故B正确;
    C. .当CG⊥AE时,∵△ABE是等边三角形,
    ∴∠ABG=30°,
    ∴∠ABC=180°-30°=150°,
    ∵∠ABC=150°无法求出,故C错误;
    D. 同理可证△CDF≌△EAF,
    ∴EF=CF,
    ∵△CDF≌△EBC,
    ∴CE=CF,
    ∴EC=CF=EF,
    ∴△ECF是等边三角形,故D正确;
    故选C.
    点睛:本题考查了全等三角形的判定、等边三角形的判定和性质、平行四边形的性质等知识,综合性强.考查学生综合运用数学知识的能力.根据题意,结合图形,对选项一一求证,判定正确选项.
    6、D
    【解析】
    利用反比例函数图象上点的坐标特征对A进行判断;根据反比例函数的性质对B、C、D进行判断.
    【详解】
    解:A、当x=3时,y=-=-2,所以点(3,-2)在函数y=-的图象上,所以A选项的结论正确;
    B、反比例函数y=-分布在第二、四象限,所以B选项的结论正确;
    C、当x>0时,y随着x的增大而增大,所以C选项的结论正确;
    D、当x<0时,y随着x的增大而增大,所以D选项的结论不正确.
    故选:D.
    本题考查了反比例函数的性质:反比例函数y=-(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.
    7、D
    【解析】
    过点A作AH⊥BE于K,交BC于H,设AB=m,由正方形性质和等腰三角形性质可证明:△BKH∽△BFG,BH=BG,再证明△ABH≌△BCE,可得BH=CE,可列方程(m−2)=m−7,即可求得BC=12,CE=5,由勾股定理可求得BE.
    【详解】
    解:如图,过点A作AH⊥BE于K,交BC于H,设AB=m,
    ∵正方形ABCD
    ∴BC=CD=AB=m,∠ABH=∠C=90°
    ∵CG=2,DE=7,
    ∴CE=m−7,BG=m−2
    ∵FG⊥BE
    ∴∠BFG=90°
    ∵AF=AB,AH⊥BE
    ∴BK=FK,即BF=2BK,∠BKH=90°=∠BFG
    ∴△BKH∽△BFG
    ∴,即BH=BG=(m−2)
    ∵∠ABK+∠CBE=∠ABK+∠BAH=90°
    ∴∠BAH=∠CBE
    在△ABH和△BCE中,∠BAH=∠CBE,AB=BC,∠ABH=∠BCE,
    ∴△ABH≌△BCE(ASA)
    ∴BH=CE
    ∴(m−2)=m−7,解得:m=12
    ∴BC=12,CE=12−7=5
    在Rt△BCE中,BE=.
    故选:D.
    本题考查了正方形性质,全等三角形判定和性质,等腰三角形性质,勾股定理,相似三角形判定和性质等;解题时要熟练运用以上知识,通过转化建立方程求解.
    8、D
    【解析】
    15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能获奖,只需要了解自己的成绩以及全部成绩的中位数,比较即可。
    【详解】
    解:由于总共有15个人,且他们的分数互不相同,第8名的成绩是中位数,要判断是否得奖,故应知道自已的成绩和中位数.
    故选:D.
    本题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    应用提取公因式法,公因式x,再运用平方差公式,即可得解.
    【详解】
    解:
    此题主要考查运用提公因式进行因式分解,平方差公式的运用,熟练掌握即可解题.
    10、x(x+2)(x﹣2).
    【解析】
    试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).
    考点:提公因式法与公式法的综合运用;因式分解.
    11、1
    【解析】
    分析:首先求出直线y=2x-6与x轴、y轴的交点的坐标,然后根据三角形的面积公式得出结果.
    详解:∵当x=0时,y=0-6=-6,
    ∴图像与y轴的交点是(0,-6);
    ∵当y=0时,2x-6=0,
    ∴x=3,
    ∴图像与x轴的交点是(3,0);
    ∴S△AOB=×3×6=1.
    故答案为:1.
    点睛:本题考查了一次函数图像与坐标轴的交点问题,分别令x=0和y=0求出图像与坐标轴的交点是解答本题的关键.
    12、
    【解析】
    利用三角形中位线求得线段FG、GH;再利用勾股定理即可求出FH的长.
    【详解】
    解:∵,,分别是,,中点

    ∵∠FGH=90°
    ∴为直角三角形
    根据勾股定理得:
    故答案为:5
    本题考查了三角形中位线定理以及勾股定理,熟练掌握三角形中位线定理是解答本题的关键.
    13、1
    【解析】
    根据实数的运算法则,利用平方差公式计算即可得答案.
    【详解】
    (2+)(2-)
    =22-()2
    =4-3
    =1.
    故答案为:1
    本题考查实数的运算,熟练掌握运算法则并灵活运用平方差公式是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)y=200x+74000(10≤x≤30)
    (2)有三种分配方案,
    方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;
    方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;
    方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;
    (3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.
    【解析】
    (1)根据题意和表格中的数据可以得到y关于x的函数关系式;
    (2)根据题意可以得到相应的不等式,从而可以解答本题;
    (3)根据(1)中的函数解析式和一次函数的性质可以解答本题.
    【详解】
    解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,
    ∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);
    (2)由题意可得,
    200x+74000≥79600,得x≥28,
    ∴28≤x≤30,x为整数,
    ∴x=28、29、30,
    ∴有三种分配方案,
    方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;
    方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;
    方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;
    (3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,
    理由:∵y=200x+74000中y随x的增大而增大,
    ∴当x=30时,y取得最大值,此时y=80000,
    ∴派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.
    本题考查一次函数的性质,解题关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答.
    15、(1)一月份甲型号手机每台售价为4500元;(2)共有5种进货方案.
    【解析】
    (1)设一月份甲型号手机每台售价为x元,则二月份甲型号手机每台售价为(x-500)元,根据数量=总价÷单价结合一二月份甲型号手机的销售量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设购进甲型号手机m台,则购进乙型号手机(20-m)台,根据总价=单价×数量结合总价不多于7.6万元且不少于7.4万元,即可得出关于m的一元一次不等式组,解之取其正值即可得出结论.
    【详解】
    解:(1)设一月份甲型号手机每台售价为x元,则二月份甲型号手机每台售价为(x﹣500)元,
    根据题意得:,
    解得:x=4500,
    经检验,x=4500是所列分式方程的解,且符合题意.
    答:一月份甲型号手机每台售价为4500元.
    (2)设购进甲型号手机m台,则购进乙型号手机(20﹣m)台,
    根据题意得:,
    解得:8≤m≤1.
    ∵m为正整数,
    ∴m=8或9或10或11或1.
    ∴共有5种进货方案.
    本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.
    16、(1)点,点;(2)点;(3)①P(0,5),移动时间为秒;②P(,6),移动时间为秒;③P(4,1),移动时间为:秒;④P(,0),移动时间为:秒
    【解析】
    (1)根据点A,点C的位置即可解答;
    (2)根据点P的速度及移动时间即可解答;
    (3)对点P的位置分类讨论,根据三角形的面积计算公式即可解答.
    【详解】
    解:(1)点在轴上,点在轴上,
    ∴m+2=0,n-1=0,
    ∴m=-2,n=1.
    ∴点,点
    (2)由(1)可知:点,点
    当点移动了秒时,移动的路程为:4×2=8,
    ∴此时点P在CB上,且CP=2,
    ∴点.
    (3)①如图1所示,当点P在OC上时,
    ∵△OBP的面积为10,
    ∴,即,解得OP=5,
    ∴点P的坐标为(0,5),运动时间为:(秒)
    ②如图2所示,当点P在BC上时,
    ∵△OBP的面积为10,
    ∴,即,解得BP=,
    ∴CP=
    ∴点P的坐标为(,6),运动时间为:(秒)
    ③如图3所示,当点P在AB上时,
    ∵△OBP的面积为10,
    ∴,即,解得BP=5,
    ∴AP=1
    ∴点P的坐标为(4,1),运动时间为:(秒)
    ④如图4所示,当点P在OA上时,
    ∵△OBP的面积为10,
    ∴,即,解得OP=,
    ∴点P的坐标为(,0),运动时间为:(秒)
    综上所述:①P(0,5),移动时间为秒;②P(,6),移动时间为秒;③P(4,1),移动时间为:秒;④P(,0),移动时间为:秒.
    本题考查了平面直角坐标系中的坐标及动点运动问题,解题的关键是熟知平面直角坐标系中点的特点及动点的运动情况.
    17、.
    【解析】
    过点C作CD⊥BA,垂足为D.根据平角的定义可得∠DAC=60°,在Rt△ACD中,根据三角函数可求AD,BD的长;在Rt△BCD中,根据勾股定理可求BC的长.
    【详解】
    解:过点作,垂足为


    在Rt中

    在Rt中
    本题考查解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.同时考查了勾股定理.
    18、(1)45°;(2)①四边形BEFG是菱形,8;② y=(0<x<12)
    【解析】
    (1)利用等腰三角形的性质求出∠AEF即可解决问题.
    (2)①证明四边形BEFG是菱形,根据垂线段最短,求出BE的最小值即可解决问题.
    ②如图2﹣1中,连接BD,DE,过点E作EH⊥CD于H.证明△ABG≌△DBE(SAS),推出AG=DE=y,在Rt△CEH中,EH=EC=x.CH=x,推出DH=|4﹣x|,在Rt△DEH中,根据DE2=EH2+DH2,构建方程求解即可.
    【详解】
    解:(1)如图1中,
    ∵四边形ABCD是菱形,
    ∴BC∥AD,∠BAC=∠DAC,
    ∴∠ABC+∠BAD=180°,
    ∵∠ABC=120°,
    ∴∠BAD=60°,
    ∴∠EAF=30°,
    ∵AE=AF,
    ∴∠AEF=∠AFE=75°,
    ∵∠BEF=120°,
    ∴∠AEB=120°﹣75°=45°.
    (2)①如图2中,连接DE.
    ∵AB=AD,∠BAE=∠DAE,AE=AE,
    ∴△BAE≌△DAE(SAS),
    ∴BE=DE,∠ABE=∠ADE,
    ∵∠BAF+∠BEF=60°+120°=180°,
    ∴∠ABE+∠AFE=180°,
    ∵∠AFE+∠EFD=180°,
    ∴∠EFD=∠ABE,
    ∴∠EFD=∠ADE,
    ∴EF=ED,
    ∴EF=BE,
    ∵BE∥FG,BG∥EF,
    ∴四边形BEFG是平行四边形,
    ∵EB=EF,
    ∴四边形BEFG是菱形,
    ∴当BE⊥AC时,菱形BEFG的周长最小,此时BE=AB•sin30°=2,
    ∴四边形BGFE的周长的最小值为8.
    ②如图2﹣1中,连接BD,DE,过点E作EH⊥CD于H.
    ∵AB=AD,∠BAD=60°,
    ∴△ABD是等边三角形,
    ∴BD=BA,∠ABD=60°,
    ∵BG∥EF,
    ∴∠EBG=180°﹣120°=60°,
    ∴∠ABD=∠GBE,
    ∴∠ABG=∠DBE,
    ∵BG=BE,
    ∴△ABG≌△DBE(SAS),
    ∴AG=DE=y,
    在Rt△CEH中,EH=EC=x.CH=x,
    ∴DH=|4﹣x|,
    在Rt△DEH中,∵DE2=EH2+DH2,
    ∴y2=x2+(4﹣x)2,
    ∴y2=x2﹣12x+48,
    ∴y=(0<x<12).
    本题属于四边形综合题,考查了菱形的性质,等边三角形的判定和性质,勾股定理,平行四边形的判定和性质,菱形的判定,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据勾股定理逐一进行计算,从中找到规律,即可得到答案.
    【详解】
    第一个三角形中,

    第二个三角形中,

    第三个三角形中,


    第n个三角形中,

    当时,
    故答案为:.
    本题主要考查勾股定理及三角形面积公式,掌握勾股定理,找到规律是解题的关键.
    20、20
    【解析】
    由旋转的性质可得AC=A'C,∠ACA'=40°,∠BAC=∠B'A'C=90°,由等腰三角形的性质可得∠AA'C=70°=∠A'AC,即可求解.
    【详解】
    ∵将△ABC绕点C顺时针旋转40°得到△A'B'C,
    ∴△ABC≌△A'B'C
    ∴AC=A'C,∠ACA′=40°,∠BAC=∠B'A'C=90°
    ∴∠AA'C=70°=∠A'AC
    ∴∠B'A'A=∠B'A'C−∠AA'C=20°.
    本题考查全等三角形的判定与性质,等腰直角三角形,旋转的性质.旋转前后对应线段相等,对应角相等,对应图形全等.在旋转过程中,一定要仔细读题,能理解∠ACA′即为旋转角等于40°,AC和A'C为一组对应线段.
    21、
    【解析】
    先根据垂径定理得出AE=EB=AB,再由勾股定理求出半径和OE的值,最后利用三角形中位线的性质可知BC=2OE,则BC的长度即可求解.
    【详解】
    ∵OD⊥AB,
    ∴AE=EB=AB= ,
    设OA=OD=r,
    在Rt△AOE中,
    ∵AO2=AE2+OE2,ED=
    ∴r2=()2+(r﹣)2,
    ∴r=,
    ∴OE=,
    ∵OA=OC,AE=EB,
    ∴BC=2OE= ,
    故答案为:.
    本题主要考查勾股定理,垂径定理,三角形中位线的性质,掌握勾股定理,垂径定理,三角形中位线的性质是解题的关键.
    22、1
    【解析】
    将代入原式=(x-3-2)2=(x-1)2计算可得.
    【详解】
    当时,
    原式

    故答案为1.
    本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式.
    23、1
    【解析】
    首先根据一次函数y=6﹣x与y=kx图像的交点横坐标为1,代入一次函数y=6﹣x求得交点坐标为(1,4),然后代入y=kx求得k值即可.
    【详解】
    ∵一次函数y=6﹣x与y=kx图像的交点横坐标为1,∴y=6﹣1=4,∴交点坐标为(1,4),代入y=kx,1k=4,解得:k=1.
    故答案为1.
    本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=6﹣x与y=kx两个解析式.
    二、解答题(本大题共3个小题,共30分)
    24、(1)Q(-3,1)(2)a>3(3)0
    【解析】
    (1)如图,作PA⊥x轴于A,QB⊥x轴于B,则∠PAO=∠OBQ=90°,证明△OBQ≌△PAO(AAS),从而可得OB=PA,QB=OA,继而根据点P的坐标即可求得答案;
    (2)利用点平移的规律表示出Q′点的坐标,然后根据第四象限点的坐标特征得到a的不等式组,再解不等式即可;
    (3)由(2)得,m=-3+a,n=1-a,代入所求式子得 ,继而根据偶次方的非负性即可求得答案 .
    【详解】
    (1)如图,作PM⊥x轴于A,QN⊥x轴于B,则∠PAO=∠OBQ=90°,
    ∴∠P+∠POA=90°,
    由旋转的性质得:∠POQ=90°,OQ=OP,
    ∴∠QOB+∠POA=90°,
    ∴∠QOB=∠P,
    ∴△OBQ≌△PAO(AAS),
    ∴OB=PA,QB=OA,
    ∵点P的坐标为(1,3),
    ∴OB=PA=3,QB=OA=1,
    ∴点Q的坐标为(-3,1);
    (2)把点Q(-3,1)向右平移a个单位长度,向下平移a个单位长度后,
    得到的点M的坐标为(-3+a,1-a),
    而M在第四象限,
    所以,
    解得a>3,
    即a的范围为a>3;
    (3)由(2)得,m=-3+a,n=1-a,



    ∵,
    ∴当a=4时,代数式的最小值为0.
    本题考查了坐标与图形变换-旋转,象限内点的坐标特征,解不等式组,配方法在求最值中的应用等,综合性较强,熟练掌握相关知识是解题的关键.
    25、
    【解析】
    先确定最简公分母是,将方程两边同时乘以最简公分母约去分母可得:,然后解一元一次方程,最后再代入最简公分母进行检验.
    【详解】
    去分母得:,
    解得:,
    经检验是分式方程的解.
    本题主要考查解分式方程的方法,解决本题的关键是要熟练掌握解分式方程的方法和步骤.
    26、(1)该服装店第一次购进衬衫 150 件.(2)这笔生意共盈利 7500 元.
    【解析】
    分析:(1)设该服装店第一次购进衬衫x件,根据题目中的“第二次每件进价比第一次多5元”可得出相等关系,列方程求解即可;
    (2)用第一次的利润+第二次的利润,和是正数表示盈利.
    详解:(1)设该服装店第一次购进衬衫x件.由题意得:

    解得:x=150,经检验:x=150 是原方程的解.
    答:该服装店第一次购进衬衫150 件.
    (2)第一次购进的单价为 6000÷150=40(元/件)
    第二次的购进数量为:150×2=300(件)
    第二次购进的单价为:40+5=45(元/件)
    这笔生意的利润为:(60-40)×150+(60-45)×300=7500(元)
    答:这笔生意共盈利 7500 元.
    点睛:本题考查的是分式方程的应用,正确分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
    题号





    总分
    得分
    批阅人
    每台甲型收割机的租金
    每台乙型收割机的租金
    A地区
    1800
    1600
    B地区
    1600
    1200

    相关试卷

    2024年山东省济宁嘉祥县联考九上数学开学统考模拟试题【含答案】:

    这是一份2024年山东省济宁嘉祥县联考九上数学开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山东省德州市夏津县数学九上开学监测模拟试题【含答案】:

    这是一份2024年山东省德州市夏津县数学九上开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山东省德州市第七中学数学九上开学统考试题【含答案】:

    这是一份2024年山东省德州市第七中学数学九上开学统考试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map