初中数学华东师大版(2024)八年级下册2. 矩形的判定教学设计
展开
这是一份初中数学华东师大版(2024)八年级下册2. 矩形的判定教学设计,共4页。教案主要包含了教学目标,重点,例题的意图分析,课堂引入,例习题分析,随堂练习,课后练习等内容,欢迎下载使用。
一、教学目标:
1.理解并掌握矩形的判定方法.
2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
二、重点、难点
1.重点:矩形的判定.
2.难点:矩形的判定及性质的综合应用.
三、例题的意图分析
本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是一道矩形的判定题,题目从不同的角度出发,来综合应用矩形定义及判定等知识的.
四、课堂引入
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?
通过讨论得到矩形的判定方法.
矩形判定方法1:对角钱相等的平行四边形是矩形.
矩形判定方法2:有三个角是直角的四边形是矩形.
(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)
五、例习题分析
例1(补充)下列各句判定矩形的说法是否正确?为什么?
(1)有一个角是直角的四边形是矩形; (×)
(2)有四个角是直角的四边形是矩形; (√)
(3)四个角都相等的四边形是矩形; (√)
(4)对角线相等的四边形是矩形; (×)
(5)对角线相等且互相垂直的四边形是矩形; (×)
(6)对角线互相平分且相等的四边形是矩形; (√)
(7)对角线相等,且有一个角是直角的四边形是矩形; (×)
(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)
(9)两组对边分别平行,且对角线相等的四边形是矩形. (√)
指出:
(l)所给四边形添加的条件不满足三个的肯定不是矩形;
(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.
例2(补充) 已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.
分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.
证明:∵ 四边形ABCD是平行四边形,
∴ AD∥BC.
∴ ∠DAB+∠ABC=180°.
又 AE平分∠DAB,BG平分∠ABC ,
∴ ∠EAB+∠ABG=×180°=90°.
∴ ∠AFB=90°.
同理可证 ∠AED=∠BGC=∠CHD=90°.
∴ 四边形EFGH是平行四边形(有三个角是直角的四边形是矩形).
六、随堂练习
1.(选择)下列说法正确的是( ).
(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形
(C)对角线互相平分的四边形是矩形 (D)对角互补的平行四边形是矩形
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形.
七、课后练习
1.工人师傅做铝合金窗框分下面三个步骤进行:
⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;
⑵ 摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: ;
⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: ;
2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.
相关教案
这是一份初中数学华师大版八年级下册2. 矩形的判定教学设计及反思,共3页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。
这是一份华师大版八年级下册第19章 矩形、菱形与正方形19.1 矩形2. 矩形的判定教学设计,共13页。教案主要包含了教学内容分析,教学目标,学习者特征分析,教学策略选择与设计,教学流程设计,难点的突破方法,课前准备,教学过程等内容,欢迎下载使用。
这是一份华师大版八年级下册第19章 矩形、菱形与正方形19.1 矩形2. 矩形的判定教案,共4页。教案主要包含了教学的重点等内容,欢迎下载使用。