年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    专题13.5 等边三角形【十大题型】同步讲义(举一反三)(人教版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题13.5 等边三角形【十大题型】(举一反三)(人教版)(原卷版).docx
    • 解析
      专题13.5 等边三角形【十大题型】(举一反三)(人教版)(解析版).docx
    专题13.5 等边三角形【十大题型】(举一反三)(人教版)(原卷版)第1页
    专题13.5 等边三角形【十大题型】(举一反三)(人教版)(原卷版)第2页
    专题13.5 等边三角形【十大题型】(举一反三)(人教版)(原卷版)第3页
    专题13.5 等边三角形【十大题型】(举一反三)(人教版)(解析版)第1页
    专题13.5 等边三角形【十大题型】(举一反三)(人教版)(解析版)第2页
    专题13.5 等边三角形【十大题型】(举一反三)(人教版)(解析版)第3页
    还剩12页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级上册13.3.2 等边三角形优质学案设计

    展开

    这是一份数学八年级上册13.3.2 等边三角形优质学案设计,文件包含专题135等边三角形十大题型举一反三人教版原卷版docx、专题135等边三角形十大题型举一反三人教版解析版docx等2份学案配套教学资源,其中学案共79页, 欢迎下载使用。

    TOC \ "1-3" \h \u
    \l "_Tc31914" 【题型1 利用等边三角形的性质求角的度数】 PAGEREF _Tc31914 \h 1
    \l "_Tc21496" 【题型2 利用等边三角形的性质求线段长度】 PAGEREF _Tc21496 \h 2
    \l "_Tc8062" 【题型3 利用等边三角形的性质求最值】 PAGEREF _Tc8062 \h 3
    \l "_Tc18896" 【题型4 证明等边三角形】 PAGEREF _Tc18896 \h 4
    \l "_Tc24731" 【题型5 探究平面直角坐标系中的等边三角形问题】 PAGEREF _Tc24731 \h 6
    \l "_Tc26019" 【题型6 探究等边三角形中的折叠问题】 PAGEREF _Tc26019 \h 8
    \l "_Tc6725" 【题型7 探究等边三角形中的三角板问题】 PAGEREF _Tc6725 \h 9
    \l "_Tc4449" 【题型8 探究等边三角形中的动态问题】 PAGEREF _Tc4449 \h 11
    \l "_Tc3193" 【题型9 探究等边三角形中线段或角度之间的关系】 PAGEREF _Tc3193 \h 12
    \l "_Tc23449" 【题型10 等边三角形中的多结论问题判断正误】 PAGEREF _Tc23449 \h 14
    知识点:等边三角形
    (1)定义:三条边都相等的三角形,叫做等边三角形.
    (2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.
    (3)等边三角形的判定:
    ①三条边都相等的三角形是等边三角形;
    ②三个角都相等的三角形是等边三角形;
    ③有一个角为 60°的等腰三角形是等边三角形.
    【题型1 利用等边三角形的性质求角的度数】
    【例1】(23-24八年级·黑龙江哈尔滨·期中)如图,D为等边三角形ABC内一点,AD=BD,BP=AB,∠DBP=∠DBC,则∠BPD= 度.
    【变式1-1】(23-24八年级·陕西西安·期中)等边三角形两条中线相交所成锐角度数为( )
    A.30°B.45°C.50°D.60°
    【变式1-2】(23-24八年级·福建莆田·期中)如图,△ABC是等边三角形,BC⊥CD,且AC=CD,则∠BAD的度数为( )
    A.50°B.45°C.40°D.35°
    【变式1-3】(23-24八年级·辽宁本溪·期中)如图,△ABC是等边三角形,AD是BC边上的中线,点E在AD上,且DE=12BC,则∠AFE的度数为 .
    【题型2 利用等边三角形的性质求线段长度】
    【例2】(23-24八年级·江苏无锡·期中)如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC上,则线段AP的长是( )

    A.4B.5C.6D.8
    【变式2-1】(23-24八年级·河南漯河·期末)如图,已知等边△ABC,点 O是 BC 上任意一点,OE、OF 分别与两边垂直,等边三角形的高为 1,则 OE+OF 的值为( )
    A.0.5B.1C.2D.不确
    【变式2-2】(23-24八年级·吉林长春·期末)如图,等边△ABC的边长为8cm,点D、E分别在边AB、AC上,点A落在点A1处,且点A1在△ABC外部,则阴影部分图形的周长为 cm.
    【变式2-3】(23-24八年级·广西南宁·期中)如图,过边长为4的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( )
    A.95B.2C.115D.125
    【题型3 利用等边三角形的性质求最值】
    【例3】(2024·湖北·中考真题)如图,D是等边三角形ABC外一点.若BD=8,CD=6,连接AD,则AD的最大值与最小值的差为 .
    【变式3-1】(23-24八年级·江苏无锡·期中)如图,在等边三角形ABC中,AD是边BC上的中线,且AD=6,E是AD上的一个动点,F是边AB的中点,BE+EF的最小值为( )
    A.5B.6C.7D.8
    【变式3-2】(23-24八年级·福建福州·期中)如图,在等边△ABC中,E是AC边的中点,P是△ABC的中线AD上的动点,且AB=6,则BP-PE的最大值是 .
    【变式3-3】(23-24八年级·福建福州·期中)如图,在△ABC中,∠ACB=90°,BC=6,AC=8,点D是AC边上的中点,点P在BC上的一个动点,连接DP,在DP的下方作等边三角形DPE,连接CE,则CE最小值是( )
    A.3B.2C.1.5D.1
    【题型4 证明等边三角形】
    【例4】(23-24八年级·天津宁河·期中)如图所示,在 △ABC中, ∠B=60°,AB=AC,点D,E分别在BC,AB上,且 BD=AE,AD与CE交于点 F.
    (1)求证: △ABC是等边三角形;
    (2)求证: AD=CE;
    (3)求 ∠DFC的大小.
    【变式4-1】(23-24八年级·重庆丰都·期末)如图,点E在△ABC的外部,点D在BC上,DE交AC于点F,∠2=∠3,AE=AC,DE=BC.
    (1)求证:△ABC≌△ADE.
    (2)若∠2=60°,猜想△ABD的形状并证明.
    【变式4-2】(23-24八年级·广东广州·阶段练习)在等腰△ABC中,AB=AC=4,∠BAC=120°,AD⊥BC于D,点O、点P分别在射线AD、BA上运动,且保证∠OCP=60°,连接OP.
    (1)当点O运动到D点时,如图1,求AP的长度;
    (2)当点O运动到D点时,如图1,试判断△OPC的形状并证明;
    (3)当点O在射线AD其它地方运动时,△OPC还满足(2)的结论吗?请用图2说明理由.
    【变式4-3】(23-24八年级·陕西西安·阶段练习)如图,在四边形ABCD中,∠ABC=∠ADC=90°,AC与BD相交于点E,∠ABD=∠ADB.
    (1)填空:AC与BD的位置关系为__________,BE与DE的数量关系为__________;
    (2)过点B作BF∥CD交CA的延长线于点F,且AB=AF.
    ①求证:△BCD是等边三角形;
    ②若点G,H分别是线段AC,线段CD上的动点,当GH+AH的值最小时,请确定点H的位置,并求出GH与CH之间的数量关系.
    【题型5 探究平面直角坐标系中的等边三角形问题】
    【例5】(23-24八年级·湖北武汉·期中)在平面直角坐标系中,点A的坐标为0,4
    (1)如图1,若点B的坐标为3,0,△ABC是等腰直角三角形,BA=BC,∠ABC=90°,求C点坐标;
    (2)如图2,若点E是AB的中点,求证:AB=2OE;
    (3)如图3,△ABC是等腰直角三角形,BA=BC,∠ABC=90°,△ACD是等边三角形,连接OD,若∠AOD=30°,求B点坐标
    【变式5-1】(23-24八年级·辽宁锦州·期末)如图,在平面直角坐标系中,边长为1的正方形A1B1C1D1(记为第1个正方形)的顶点A1与原点重合,点B1在y轴上,点D1在x轴上,点C1在第一象限内,以C1为顶点作等边△C1A2B2,使得点A2落在x轴上,A2B2⊥x轴,再以A2B2为边向右侧作正方形A2B2C2D2(记为第2个正方形),点D2在x轴上,以C2为顶点作等边△C2A3B3,使得点A3落在x轴上,A3B3⊥x轴,若按照上述的规律继续作正方形,则第2021个正方形的边长为 .
    【变式5-2】(23-24八年级·黑龙江齐齐哈尔·期末)如图,在平面直角坐标系中,△AOP为等边三角形,A点坐标为(0,1),点B在y轴上且位于A点上方,以BP为边向BP的右侧作等边△PBC,连接CA,并延长CA交x轴于点E.
    (1)求证:OB=AC;
    (2)判断AP是否平分∠OAC?请说明理由;
    (3)在y轴上是否存在点Q,使得△AEQ为等腰三角形?若存在,请直接写出满足条件的所有点Q的坐标;若不存在,请说明理由.
    【变式5-3】(23-24八年级·天津和平·期末)如图,在平面直角坐标系中,O为原点,等边△ABC的顶点A,B在x轴上,顶点C的坐标为(0,12),∠BAC的平分线交y轴于点D.

    (1)如图①,求点D坐标;
    (2)如图②,E为x轴上一点,以CE为边,在第一象限内作等边△CEF,连接FB并延长交y轴于点G.求OG的长;
    (3)如图③,在(1)的条件下,M为y轴正半轴上D点上方的任意一点,在BM右上方作∠BMN=60°交AD延长线于N点,求证:DN-DM是定值.
    【题型6 探究等边三角形中的折叠问题】
    【例6】(23-24八年级·广西贺州·期末)如图,等边△ABC边长为3,点D为AB边上的一动点(D不与A、B重合).过点A折叠△ABC,使点B与C重合,得折痕AF交BC于F,然后展开;再过点D折叠△ABC,折痕DE交AC于点E,使点A落在折痕AF所在的直线上,记为点P,两折痕AF与DE交于点O.
    (1)求证:DE∥BC;
    (2)点D在运动过程中,△ADE始终是等边三角形吗?请说明理由;
    (3)连接DP、BP,当△BDP为直角三角形时,求AD的长.
    【变式6-1】(23-24八年级·河北廊坊·期末)如图1,△ABD是等边三角形,点P为射线AB上一动点,连接DP,作∠DPE=∠DAB=60°,PE交射线DA于点E,点O是线段AE,PE垂直平分线的交点.
    (1)当点O在AB边上时,∠ADP=______.
    (2)①当点P,B重合时,作AO'⊥DE,交PE的垂直平分线于点O',则∠O'PD=______.
    ②当点P在线段AB上,或AB的延长线上时,∠OPD的度数是否为定值?若是,请写出这个数,并选择点P在线段AB上时,通过计算进行说明;若不是,请说明理由.
    (3)如图2,把等边三角形△ABD沿着BD折叠,得到△BDC,且点A落在点C处,连接AC.当PE//AC时,证明AP平分∠DPE,并在△DPE内确定一点T,使点T到△DPE三边的距离相等(不写作法,只保留作图痕迹).
    【变式6-2】(23-24八年级·广东中山·期末)已知△ABC中,∠B= 60°,点D是AB边上的动点,过点D作DE∥BC交AC于点E,将△ABE沿DE折叠,点A对应点为F点.
    (1)如图1,当点F恰好落在BC边上,求证:△BDF是等边三角形;
    (2)如图2,当点F恰好落在△ABC内,且DF的延长线恰好经过点C,CF=EF,求∠A的大小;
    (3)如图3,当点F恰好落在△ABC外,DF交BC于点G,连接BF,若BF⊥AB,AB=9,求BG的长.
    【变式6-3】(23-24八年级·河南省直辖县级单位·期末)在学习完等腰三角形之后,某兴趣小组开展了如下数学活动:如图,正方形纸片ABCD,①先对折使AB与CD重合,得到折痕EF;②折叠纸片,使得点A落在EF的点H上,沿BH和CH剪下△BCH,小组成员得到了如下结论:①∠BHF=30°;②BF=12CH;③△BCH是等边三角形;④∠ABG=15°;⑤四边形ABHE和四边形DCHE全等.正确的个数是( )

    A.2个B.3个C.4个D.5个
    【题型7 探究等边三角形中的三角板问题】
    【例7】(23-24八年级·河北保定·期中)如图,在等边△ABC中,AB=10,将含30°角的三角板中60°角的顶点D放在边AB上移动,使这个60°角的两边与△ABC的边AC,BC分别交于点E,F,且DE始终与AB垂直,连接EF.
    (1)△BDF是什么三角形?请说明理由.
    (2)如图1,若AE=8,求CF的长.
    (3)如图2,当EF∥AB时,求AE的长.
    【变式7-1】(23-24八年级·辽宁沈阳·期末)将含30°角的直角三角板和直尺按如图所示的方式放置,已知∠α=60°,点B,点C表示的刻度分别为1cm,3cm,则△ABC的周长为 cm.
    【变式7-2】(23-24八年级·安徽铜陵·阶段练习)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1.将三角板中30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,且使DE始终与AB垂直.
    (1)求证:△BDF是等边三角形;
    (2)求AD-CF的值.
    【变式7-3】(23-24八年级·江苏徐州·期末)如图①,已知∠AOB=120°,OC平分∠AOB.将直角三角板如图放置,使直角顶点D在OC上,60°角的顶点E在OB上,斜边与OA交于点F(F与O不重合),连接DF.
    (1)如图②,若DE⊥OB,求证:△DEF为等边三角形.
    (2)如图③,求证:OD=OE+OF.
    【题型8 探究等边三角形中的动态问题】
    【例8】(23-24八年级·山东枣庄·开学考试)如图,△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,
    (1)当点P的运动速度是1cm/s,点Q的运动速度是2cm/s,当Q到达点C时,设运动时间为t(s),当t=2时,判断△BPQ的形状,并说明理由;
    (2)当它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s),则当t为何值时,△PBQ是直角三角形?
    【变式8-1】(23-24八年级·河北廊坊·期末)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.点M、N运动( )s后,可得到等边△AMN.
    A.3B.4C.5D.不能确定
    【变式8-2】(23-24八年级·广东江门·期中)已知,如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=18cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为ts,解答下列问题:
    (1)AB= .
    (2)求当△PBQ是等边三角形时对应的t值?
    (3)P,Q在运动过程中,△PBQ的形状不断发生变化,当t为何值时,△PBQ是直角三角形?说明理由.
    【变式8-3】(23-24八年级·广东湛江·期末)如图,在△ABC中,∠B=60°,点M从点B出发沿射线BC方向,在射线BC上运动.在点M运动的过程中,连结AM,并以AM为边在射线BC上方,作等边△AMN,连结CN.

    (1)当∠BAM=__________°时,AB=2BM;
    (2)请添加一个条件:__________,使得△ABC为等边三角形;
    (3)在(2)的条件下,当△ABC为等边三角形时,求证:CN+CM=AC;
    【题型9 探究等边三角形中线段或角度之间的关系】
    【例9】(23-24八年级·广东广州·期末)如图1,△ABC是等边三角形,D为AC边上一点,连接BD,点C关于BD的对称点为点E,连接BE.
    (1)若AB是∠DBE的平分线,求∠ABD的度数;
    (2)如图2,连接EA并延长交BD的延长线于点F,
    ①求∠F的度数;
    ②探究EA,AF和BF三者之间满足的等量关系,并说明理由.
    【变式9-1】(23-24八年级·贵州毕节·期末)如图,在等边△ABC中,∠ABC与∠ACB的平分线交于点D,分别作BD,CD的垂直平分线EM,FN,分别交BC于点M,N,则MN与△ABC边长的关系是( )
    A.MN=12BCB.MN=13BC
    C.MN=14BCD.无法确定其倍比关系
    【变式9-2】(23-24八年级·河南洛阳·期末)如图,将长方形纸片ABCD对折,使AD与BC重合,展平纸片,得到折痕EF;折叠纸片,使点B落在EF上,并使折痕经过点A,得到折痕AM,点B,E的对应点分别为G,H,展平纸片,连结BG,BH,则∠ABH与∠GAM的关系是 .
    【变式9-3】(23-24八年级·重庆綦江·期末)如图,△ABC是等边三角形,点D在边AC上(点D不与点A,C重合),点E是射线BC上的一个动点(点E不与点B,C重合),连接DE,以DE为边作等边△DEF,连接CF.
    (1)如图1,当DE的延长线与AB的延长线相交,且点C,F在直线DE的同侧时,过点D作DG∥AB,DG交BC于点G,求证:CF=EG;
    (2)如图2,当DE的反向延长线与AB的反向延长线相交,且点C,F在直线DE的同侧时,求证:CD=CE+CF;
    (3)如图3,当DE的反向延长线与线段AB相交,且点C,F在直线DE的异侧时,猜想CD、CE、CF之间的等量关系,并说明理由.
    【题型10 等边三角形中的多结论问题判断正误】
    【例10】(23-24八年级·广东深圳·期末)如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,恒成立的结论有( )

    A.①③⑤B.①③④⑤C.①②③⑤D.①②③④⑤
    【变式10-1】(23-24八年级·广东佛山·期中)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连接CD,分别交AE、AB于点F、G,过点A作AH⊥CD交BD于点H,EH=1,则下列结论:①∠ACD=15°;②△AFG是等腰三角形;③△ADF≌△BAH;④DF=2.其中正确的有( )
    A.①②③B.①②④C.①③④D.②③④
    【变式10-2】(2024·山东泰安·模拟预测)如图,等边△ABC中,AB=2,D为△ABC内一点,且DA=DB,E为△ABC外一点,BE=AB且∠EBD=∠CBD,连接DE、CE,则下列结论:①∠DAC=∠DBC;②BE⊥AC;③∠DEB=30°;④若EC∥AD,则S△EBC=1,其中正确的有( )
    A.1个B.2个C.3个D.4个
    【变式10-3】(23-24八年级·重庆璧山·期中)如图,已知等边△ABC和等边△BPE,点P在BC的延长线上,EC的延长线交AP于点M,连接BM;下列结论:①AP=CE;②∠PME=60°;③BM平分∠AME;④AM+MC=BM,其中正确的有( )
    A.1个B.2个C.3个D.4个

    相关学案

    数学八年级上册第十二章 全等三角形12.2 三角形全等的判定精品学案设计:

    这是一份数学八年级上册第十二章 全等三角形12.2 三角形全等的判定精品学案设计,文件包含专题122三角形全等的判定基础篇十大题型举一反三人教版原卷版docx、专题122三角形全等的判定基础篇十大题型举一反三人教版解析版docx等2份学案配套教学资源,其中学案共45页, 欢迎下载使用。

    初中数学人教版(2024)八年级上册12.1 全等三角形精品学案:

    这是一份初中数学人教版(2024)八年级上册12.1 全等三角形精品学案,文件包含专题121全等三角形十大题型举一反三人教版原卷版docx、专题121全等三角形十大题型举一反三人教版解析版docx等2份学案配套教学资源,其中学案共37页, 欢迎下载使用。

    人教版(2024)八年级上册11.1.1 三角形的边优质导学案:

    这是一份人教版(2024)八年级上册11.1.1 三角形的边优质导学案,文件包含专题111三角形的边十大题型举一反三人教版原卷版docx、专题111三角形的边十大题型举一反三人教版解析版docx等2份学案配套教学资源,其中学案共33页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map