搜索
    上传资料 赚现金
    英语朗读宝

    2025届山东省蒙阴县九上数学开学检测试题【含答案】

    2025届山东省蒙阴县九上数学开学检测试题【含答案】第1页
    2025届山东省蒙阴县九上数学开学检测试题【含答案】第2页
    2025届山东省蒙阴县九上数学开学检测试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届山东省蒙阴县九上数学开学检测试题【含答案】

    展开

    这是一份2025届山东省蒙阴县九上数学开学检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
    根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择 ( )
    A.甲B.乙C.丙D.丁
    2、(4分)如图所示的是一扇高为2m,宽为1.5m的长方形门框,光头强有一些薄木板要通过门框搬进屋内,在不能破坏门框,也不能锯短木板的情况下,能通过门框的木板最大的宽度为( )
    A.1.5mB.2mC.2.5mD.3m
    3、(4分)下表是小红填写的实践活动报告的部分内容:
    设铁塔顶端到地面的高度为,根据以上条件,可以列出的方程为( )
    A.B.
    C.D.
    4、(4分)如图,已知点E、F分别是△ABC的边AB、AC上的点,且EF∥BC,点D是BC边上的点,AD与EF交于点H,则下列结论中,错误的是( )
    A.B.C.D.
    5、(4分)直线y=2x+2沿y轴向下平移6个单位后与x轴的交点坐标是( )
    A.(-4,0)B.(-1,0)C.(0,2)D.(2,0)
    6、(4分)为了了解中学课堂教学质量,我市教体局去年对全市中学教学质量进行调查方法是通过考试参加考试的为全市八年级学生,从中随机抽取600名学生的英语成绩进行分析对于这次调查,以下说法不正确的是( )
    A.调查方法是抽样调查B.全市八年级学生是总体
    C.参加考试的每个学生的英语成绩是个体D.被抽到的600名学生的英语成绩是样本
    7、(4分)如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点。设PC的长度为x,PE与PB的长度和为y,图②是y关于x的函数图象,则图象上最低点H的坐标为( )
    A.(1,2)B.()C.D.
    8、(4分)关于的一元二次方程,下列说法错误的是( )
    A.方程无实数解
    B.方程有一个实数解
    C.有两个相等的实数解
    D.方程有两个不相等的实数解
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知关于x的一次函数y=(3a-7)x+a-2的图像与y轴的交点在x轴的上方,且y随x的增大而减小,则a的取值范围为__________.
    10、(4分)某商场为了抓住夏季来临,衬衫热销的契机,决定用46000元购进A、B、C三种品牌的衬衫共300件,并且购进的每一种衬衫的数量都不少于90件.三种品牌的衬衫的进价和售价如下表所示:
    如果该商场能够将购进的衬衫全部售出,但在销售这些衬衫的过程中还需要另外支出各种费用共计1000元,那么商场能够获得的最大利润是_____元.
    11、(4分)如果三角形三边长分别为,k,,则化简得___________.
    12、(4分)在平行四边形ABCD中,若∠A=70°,则∠C的度数为_________.
    13、(4分)某市出租车白天的收费起步价为10元,即路程不超过时收费10元,超过部分每千米收费2元,如果乘客白天乘坐出租车的路程为 ,乘车费为元,那么与之间的关系式为__________________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,四边形中,,,,,点从点出发,以每秒2个单位长度的速度向点运动,同时,点从点出发,以每秒1个单位长度的速度向点运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点作于点,连接交于点,连接,设运动时间为秒.
    (1)连接、,当为何值时,四边形为平行四边形;
    (2)求出点到的距离;
    (3)如图2,将沿翻折,得,是否存在某时刻,使四边形为菱形,若存在,求的值;若不存在,请说明理由
    15、(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.
    (1)求证:四边形DFCE是菱形;
    (2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.
    16、(8分)某楼盘2018年2月份以每平方米10000元的均价对外销售,由于炒房客的涌入,房价快速增长,到4月份该楼盘房价涨到了每平方米12100元.5月份开始政府再次出台房地产调控政策,逐步控制了房价的连涨趋势,到6月份该楼盘的房价为每平方米12000元.
    (1)求3、4两月房价平均每月增长的百分率;
    (2)由于房地产调控政策的出台,购房者开始持币观望,为了加快资金周转,房地产开发商对于一次性付清购房款的客户给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,总价优惠10000元,并送五年物业管理费,物业管理费是每平方米每月1.5元,小颖家在6月份打算购买一套100平方米的该楼盘房子,她家该选择哪种方案更优惠?
    17、(10分)如图,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求菱形ABCD的面积.
    18、(10分)如图,一次函数的图象与反比例函数的图象交于第二、四象限的、两点,与、轴分别交于、两点,过点作轴于点,连接,且的面积为3,作点关于轴对称点.
    (1)求一次函数和反比例函数的解析式;
    (2)连接、,求的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,已知图中的每个小方格都是边长为工的小正方形,每个小正方形的顶点称为格点,若与是位似图形,且顶点都在格点上,则位似中心的坐标是______.
    20、(4分)如图,正方形CDEF内接于,,,则正方形的面积是________.
    21、(4分)写出一个你熟悉的既是轴对称又是中心对称的图形名称______.
    22、(4分)如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是 .
    23、(4分)如图,在菱形ABCD中,∠BAD=120°,CF⊥AD于点E,且BC=CF,连接BF交对角线AC于点M,则∠FMC=___.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在正方形中,,点是边上的动点(含端点,),连结,以所在直线为对称轴作点的对称点,连结,,,,点,,分别是线段,,的中点,连结,.
    (1)求证:四边形是菱形;
    (2)若四边形的面积为,求的长;
    (3)以其中两边为邻边构造平行四边形,当所构造的平行四边形恰好是菱形时,这时该菱形的面积是________.
    25、(10分)如图,在平行四边形中,点、分别是、上的点,且,,求证:
    (1);
    (2)四边形是菱形.
    26、(12分)如图,在矩形中,点,分别在边,上,且.
    (1)求证:四边形是平行四边形.
    (2)若四边形是菱形,,,求菱形的周长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    ∵甲的平均数和丙的平均数相等大于乙和丁的平均数,
    ∴从甲和丙中选择一人参加比赛,
    又∵甲的方差与乙的方差相等,小于丙和丁的方差.
    ∴选择甲参赛,故选A.
    考点:方差;算术平均数.
    2、C
    【解析】
    利用勾股定理求出门框对角线的长度,由此即可得出结论.
    【详解】
    解:如图,门框的对角线长为:=2.5m,
    所以能通过门框的木板的最大宽度为2.5m,
    故选C.
    本题考查了勾股定理的应用,利用勾股定理求出长方形门框对角线的长度是解题的关键.
    3、A
    【解析】
    过D作DH⊥EF于H,则四边形DCEH是矩形,根据矩形的性质得到HE=CD=10,CE=DH,求得FH=x-10,得到CE=x-10,根据三角函数的定义列方程即可得到结论.
    【详解】
    解:过D作DH⊥EF于H,
    则四边形DCEH是矩形,
    ∴HE=CD=10,CE=DH,
    ∴FH=x-10,
    ∵∠FDH=α=45°,
    ∴DH=FH=x-10,
    ∴CE=x-10,
    ∴x=(x-10)tan50°,
    故选:A.
    本题考查了解直角三角形的应用,解题的关键是熟练运用锐角三角函数的定义,正确的识别图形,由实际问题抽象出一元一次方程.
    4、B
    【解析】
    利用平行线分线段成比例定理及推论判断即可.
    平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.推论:平行于三角形一边的直线,截其他两边(或两边延长线)所得的对应线段成比例.
    【详解】
    解:∵EF∥BC,
    ∴,,=,
    ∴选项A,C,D正确,
    故选B.
    本题考查平行线分线段成比例定理及推论,解题的关键是熟练掌握基本知识.
    5、D
    【解析】
    试题分析:将y=2x+2沿y轴向下平移6个单位后的解析式为:y=2x-4,当y=0时,则x=2,即图像与x轴的交点坐标为(2,0).
    考点:一次函数的性质
    6、B
    【解析】
    根据全面调查与抽样调查的定义,总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,对各选项分析后利用排除法求解.
    【详解】
    、调查方法是抽样调查,正确;
    、全市八年级学生的英语成绩是总体,错误;
    、参加考试的每个学生的英语成绩是个体,正确;
    、被抽到的600名学生的英语成绩是样本,正确.
    故选:.
    此题考查了总体、个体、样本、样本容量.解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考察对象是相同的,所不同的是范围的大小,样本容量是样本中包含的个体的数目,不能带单位.
    7、C
    【解析】
    如图,连接PD.由B、D关于AC对称,推出PB=PD,推出PB+PE=PD+PE,推出当D、P、E共线时,PE+PB的值最小,观察图象可知,当点P与A重合时,PE+PB=3,推出AE=EB=1,AD=AB=2,分别求出PB+PE的最小值,PC的长即可解决问题.
    【详解】
    如图,连接PD.
    ∵B、D关于AC对称,
    ∴PB=PD,
    ∴PB+PE=PD+PE,
    ∴当D、P、E共线时,PE+PB的值最小,如下图:
    当点P与A重合时,PE+PB=3,
    ,AD=AB=2
    在RT△AED中,DE=
    点H的纵坐标为




    点H的横坐标为
    H
    故选C.
    本题考查正方形的性质,解题关键在于熟练掌握正方形性质及计算法则.
    8、B
    【解析】
    将各选项的k带入方程验证,即可得到答案.
    【详解】
    解:A,当k=2017,k-2019==-2,该方程无实数解,故正确;
    B, 当k=2018,k-2019==-1,该方程无实数解,故错误;
    C,当k=2019,k-2019==0,解得x=1,故正确;
    D, 当k=2020,k-2019=2020-2019=1,解得x=0或x=2,故正确;
    因此答案为B.
    本题主要考查二元一次方程的特点,把k值代入方程验证是解答本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2<a<.
    【解析】
    分析:根据已知函数的增减性判定3a-7<1,由该函数图象与y轴交点的位置可得a-2>1.
    详解:∵关于x一次函数y=(3a-7)x+a-2的图象与y轴的交点在x轴的上方,且y随着x的增大而减少,
    ∴,
    解得2<a<.
    故答案是:2<a<.
    点睛:考查了一次函数图象与系数的关系.一次函数y=kx-b(k≠1):函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;
    一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b<1,一次函数y=kx+b图象过原点⇔b=1.
    10、1.
    【解析】
    设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,根据商场所获利润=A种衬衫的利润+B种衬衫的利润+C种衬衫的利润-1000,列出方程,然后根据一次函数的性质可求解.
    【详解】
    解:设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,获得的总利润为y元,
    y=(200﹣100)a+(350﹣200)b+(300﹣150)(300﹣a﹣b)﹣1000=﹣50a+44000,
    ∵购进的每一种衬衫的数量都不少于90件,
    ∴a≥90,
    ∴当a=90时,y取得最大值,此时y=﹣50×90+44000=1,
    故答案为:1.
    一次函数在实际生活中的应用是本题的考点,根据题意列出解析式是解题的关键.
    11、11-3k.
    【解析】
    求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.
    【详解】
    ∵一个三角形的三边长分别为、k、,
    ∴-<k<+,
    ∴3<k<4,
    =-|2k-5|,
    =6-k-(2k-5),
    =-3k+11,
    =11-3k,
    故答案为:11-3k.
    本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.
    12、70°
    【解析】
    在平行四边形ABCD中,∠C=∠A,则求出∠A即可.
    【详解】
    根据题意在平行四边形ABCD中,根据对角相等的性质得出∠C=∠A,
    ∵∠A=70°,
    ∴∠C=70°.
    故答案为:70°.
    此题考查平行四边形的性质,解题关键在于利用平行四边形的性质解答.
    13、
    【解析】
    根据乘车费用=起步价+超过3千米的付费得出.
    【详解】
    解:依题意有:y=10+2(x-3)=2x+1.
    故答案为:y=2x+1.
    根据题意,找到所求量的等量关系是解决问题的关键.本题乘车费用=起步价+超过3千米的付费
    三、解答题(本大题共5个小题,共48分)
    14、 (1)当时,四边形为平行四边形;(2)点到的距离;(3)存在,,使四边形为菱形.
    【解析】
    (1)先判断出四边形CNPD为矩形,然后根据四边形为平行四边形得,即可求出t值;
    (2)设点到的距离,利用勾股定理先求出AC,然后根据面积不变求出点到的距离;
    (3)由NP⊥AD,QP=PK,可得当PM=PA时有四边形AQMK为菱形,列出方程6-t-2t=8-(6-t),求解即可.
    【详解】
    解:(1)根据题意可得,
    ∵在四边形ABCD中,AD∥BC,∠ADC=90°,NP⊥AD于点P,
    ∴四边形CNPD为矩形,


    ∵四边形为平行四边形,


    解得:,
    ∴当时,四边形为平行四边形;
    (2)设点到的距离,
    在中,

    在中,

    ∴点到的距离
    (3)存在. 理由如下:
    ∵将沿翻折得
    ∵,
    ∴当时有四边形为菱形,
    ∴,
    解得,
    ∴,使四边形为菱形.
    本题主要考查了四边形综合题,其中涉及到矩形的判定与性质,勾股定理,菱形的判定等知识,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.
    15、(1)证明见解析;(2)1+
    【解析】
    试题分析:(1)已知EF是DC的垂直平分线,可得DE=EC,DF=CF,∠EGC=∠FGC=90°,再由ASA证得△CGE≌△FCG,根据全等三角形的性质可得GE=GF,所以DE=EC=DF=CF,根据四条边都相等的四边形为菱形,即可判定四边形DFCE是菱形;(2)过D作DH⊥BC于H,根据30°直角三角形的性质求得BH=1;在Rt△DHB中,根据勾股定理求得DH的长,再判定△DHF是等腰直角三角形,即可得DH=FH=,即可求得BF的长.
    试题解析:
    (1)证明:∵EF是DC的垂直平分线,
    ∴DE=EC,DF=CF,∠EGC=∠FGC=90°,
    ∵CD平分∠ACB,
    ∴∠ECG=∠FCG,
    ∵CG=CG,
    ∴△CGE≌△FCG(ASA),
    ∴GE=GF,
    ∴DE=EC=DF=CF,
    ∴四边形DFCE是菱形;
    (2)过D作DH⊥BC于H,则∠DHF=∠DHB=90°,
    ∵∠ABC=60°,
    ∴∠BDH=30°,
    ∴BH=BD=1,
    在Rt△DHB中,DH==,
    ∵四边形DFCE是菱形,
    ∴DF∥AC,
    ∴∠DFB=∠ACB=45°,
    ∴△DHF是等腰直角三角形,
    ∴DH=FH=,
    ∴BF=BH+FH=1+.
    16、(1)3、4两月房价平均每月增长的百分率为10%;(2)选择第一种方案更优惠.
    【解析】
    (1)设3、4两月房价平均每月增长的百分率为x,根据2月份及4月份该楼盘房价,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
    (2)根据两种优惠方案,分别求出选择两种方案优惠总额,比较后即可得出结论.
    【详解】
    解:(1)设3、4两月房价平均每月增长的百分率为x,
    根据题意得:10000(1+x)2=12100,
    解得:x1=0.1=10%,x2=﹣2.1(舍去).
    答:3、4两月房价平均每月增长的百分率为10%.
    (2)选择第一种优惠总额=100×12000×(1﹣0.98)=24000(元),
    选择第二种优惠总额=100×1.5×12×5+10000=19000(元).
    ∵24000>19000,
    ∴选择第一种方案更优惠.
    本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)分别求出选择两种方案优惠总额.
    17、
    【解析】
    根据菱形的性质得到AO的长度,由等边三角形的性质和勾股定理,得到BO的长度,由菱形的面积公式可求解.
    【详解】
    解:菱形ABCD中,BA=BC,∠ABC=60°,
    ∴三角形ABC为等边三角形,
    ∴AC=AB=10;
    ∴AO=5,
    ∴BO==5
    ∴BD=10
    ∴菱形ABCD的面为S=
    本题考查了菱形的性质,熟练运用菱形的面积公式是本题的关键.
    18、(1)一次函数,反比例,(2).
    【解析】
    (1)点C在反比例函数图象上,且△OCD的面积为3,并且图象在二、四象限,可求出的值,确定反比例函数的关系式,再确定点C的坐标,用A、C的坐标用待定系数法可确定一次函数的关系式, (2)利用一次函数的关系式可求出于坐标轴的交点坐标,与反比例函数关系式联立可求出F点坐标,利用对称可求出点E坐标,最后由三角形的面积公式求出结果.
    【详解】
    解:(1)∵点C在反比例函数图象上,且△OCD的面积为3,
    ∴ , ∴,
    ∵反比例函数的图象在二、四象限, ∴,
    ∴反比例函数的解析式为,
    把C代入为: 得,, ∴C,
    把A(0,4),C(3,-2)代入一次函数得:
    ,解得:, ∴一次函数的解析式为.
    答:一次函数和反比例函数的解析式分别为:,.
    (2)一次函数与轴的交点B(2,0).
    ∵点B关于y轴对称点E, ∴点E(-2,0), ∴BE=2+2=4,
    一次函数和反比例函数的解析式联立得:,解得:
    , ∴点,
    ∴.
    答:△EFC的面积为1.
    考查反比例函数的图象和性质、一次函数的图象和性质以及方程组、三角形的面积等知识,理解反比例函数、一次函数图象上点的坐标的特征,是解决问题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(8,0)
    【解析】
    连接任意两对对应点,看连线的交点为那一点即为位似中心.
    【详解】
    解:连接BB1,A1A,易得交点为(8,0).
    故答案为:(8,0).
    用到的知识点为:位似中心为位似图形上任意两对对应点连线的交点.
    20、0.8
    【解析】
    根据题意分析可得△ADE∽△EFB,进而可得2DE=BF,2AD=EF=DE,由勾股定理得,DE2+AD2=AE2,可解得DE,正方形的面积等于DE的平方问题得解.
    【详解】
    ∵根据题意,易得△ADE∽△EFB,
    ∴BE:AE=BF:DE=EF:AD=2:1,
    ∴2DE=BF,2AD=EF=DE,
    由勾股定理得,DE+AD=AE,
    解得:DE=EF=,
    故正方形的面积是 =,
    故答案为:0.8
    本题考查相似三角形,熟练掌握相似三角形的判定及基本性质是解题关键.
    21、矩形
    【解析】
    根据轴对称图形与中心对称图形的概念求解:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
    【详解】
    既是中心对称图形又是轴对称图形的名称:矩形(答案不唯一).
    故答案为:矩形
    本题考查的是轴对称图形和中心对称图形,掌握好中心对称图形与轴对称图形的概念是解题关键.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    22、
    【解析】
    试题分析:连接DB,BD与AC相交于点M,
    ∵四边形ABCD是菱形,∴AD=AB.AC⊥DB.
    ∵∠DAB=60°,∴△ADB是等边三角形.
    ∴DB=AD=1,∴BM=
    ∴AM=
    ∴AC=.
    同理可得AE=AC=()2,AG=AE=()3,…
    按此规律所作的第n个菱形的边长为()n-1
    23、1°
    【解析】
    利用菱形的性质得出∠BCA=60°,∠ACE=∠DCE=30°,∠CBD=∠ABD=30°,AC⊥BD,再利用等腰三角形的性质以及三角形外角的性质得出答案.
    【详解】
    ∵菱形ABCD中,∠BAD=120°,CF⊥AD于点E,
    ∴∠BCA=60°,∠ACE=∠DCE=30°,∠CBD=∠ABD=30°,AC⊥BD,
    ∴∠BCF=90°,
    ∵BC=CF,
    ∴∠CBF=∠BFC=45°,
    ∴∠FBD=45°-30°=15°,
    ∴∠FMC=90°+15°=1°.
    故答案为:1.
    此题考查菱形的性质,等腰三角形的性质,得出∠CBF=∠BFC=45°是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2);(3)或或.
    【解析】
    (1)先利用三角形中位线定理得到,故,可得四边形为平行四边形,再根据对称性得到,即可得到,即邻边相等的平行四边形是菱形,故可求解;
    (2)过点作于点,过点作于点,于点,根据菱形的面积可求出,再根据中位线及正方形的性质分别求出PN,PQ,CN,AQ,设,在中,得到方程求出x即可求解;
    (3)过点作的垂线,分别交,于点,,分当时、当时、当时分别求出菱形的面积即可.
    【详解】
    解:(1)∵,,分别为,,的中点,
    ∴,
    ∴.
    ∴四边形为平行四边形.
    ∵与关于对称,
    ∴,
    ∴,
    ∴四边形为菱形.
    (2)过点作于点,过点作于点,于点,如图.
    四边形,
    ∴.
    ∵为的中点,
    ∴,
    ∴.
    ∵,,
    ∴,
    ∴.
    ∴,
    ∴.
    设,
    ∴.在中,,即,
    解得,
    ∴.
    (3)菱形的面积为或或.理由如下:
    如图,过点作的垂线,分别交,于点,.
    当时,点在点处,
    此时菱形;
    当时,此时是正三角形,
    ∴,PK=BP=5cm,
    菱形;
    当时,此时是正三角形,

    则CL=CP=5cm,
    ∴,,
    菱形.
    综上所述,菱形的面积为或或.
    此题主要考查正方形的性质与判定,解题的关键是熟知菱形的性质与判定、勾股定理的应用及等边三角形的性质.
    25、 (1)证明见解析;(2)证明见解析.
    【解析】
    (1)由平行四边形的性质得出∠A=∠C,由ASA证明△DAE≌△DCF,即可得出DE=DF;
    (2)由全等三角形的性质得出DA=DC,即可得出结论.
    【详解】
    证明:(1)∵四边形ABCD是平行四边形
    ∴∠A=∠C,
    在△DAE和△DCF中,,
    ∴△DAE≌△DCF(ASA),
    ∴DE=DF;
    (2)由(1)可得△DAE≌△DCF
    ∴DA=DC,
    又∵四边形ABCD是平行四边形
    ∴四边形ABCD是菱形.
    本题考查了菱形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.
    26、(1)见解析;(2)20.
    【解析】
    (1)由矩形的性质得出,,,证出,即可得出四边形是平行四边形.
    (2)由菱形的性质得出,,设,则,在中,由勾股定理得出方程,解方程即可.
    【详解】
    (1)证明:四边形是矩形,
    ,,,


    四边形是平行四边形.
    (2)四边形是菱形,
    ,,
    设,则,
    在中,由勾股定理得:,
    解得:,

    菱形的周长.
    此题考查了菱形的性质、矩形的性质、平行四边形的判定以及勾股定理.此题难度不大,注意掌握数形结合思想的应用.
    题号





    总分
    得分
    型号
    A
    B
    C
    进价(元/件)
    100
    200
    150
    售价(元/件)
    200
    350
    300

    相关试卷

    2025届山东省梁山县数学九上开学达标检测模拟试题【含答案】:

    这是一份2025届山东省梁山县数学九上开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省金乡县数学九上开学检测试题【含答案】:

    这是一份2025届山东省金乡县数学九上开学检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省菏泽单县联考数学九上开学检测模拟试题【含答案】:

    这是一份2025届山东省菏泽单县联考数学九上开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map