终身会员
搜索
    上传资料 赚现金

    2025届山东省青岛市平度市第一中学九上数学开学教学质量检测模拟试题【含答案】

    立即下载
    加入资料篮
    2025届山东省青岛市平度市第一中学九上数学开学教学质量检测模拟试题【含答案】第1页
    2025届山东省青岛市平度市第一中学九上数学开学教学质量检测模拟试题【含答案】第2页
    2025届山东省青岛市平度市第一中学九上数学开学教学质量检测模拟试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届山东省青岛市平度市第一中学九上数学开学教学质量检测模拟试题【含答案】

    展开

    这是一份2025届山东省青岛市平度市第一中学九上数学开学教学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列各曲线中表示y是x的函数的是( )
    A.B.C.D.
    2、(4分)化简的结果是( )
    A.B.C.D.
    3、(4分)下列结论中,正确的是( )
    A.四边相等的四边形是正方形
    B.对角线相等的菱形是正方形
    C.正方形两条对角线相等,但不互相垂直平分
    D.矩形、菱形、正方形都具有“对角线相等”的性质
    4、(4分)如图,在矩形ABCD中,E为AD的中点,∠BED的平分线交BC于点F,若AB=3,BC=8,则FC的长度为( )
    A.6B.5C.4D.3
    5、(4分)观察下列命题:
    (1)如果a<0,b>0,那么a+b<0;
    (2)如果两个三角形的3个角对应相等,那么这两个三角形全等;
    (3)同角的补角相等;
    (4)直角都相等.
    其中真命题的个数是( ).
    A.0B.1C.2D.3
    6、(4分)若,则下列不等式不成立的是( ).
    A.B.C.D.
    7、(4分)若点P(-1,3)在过原点的一条直线上,则这条直线所对应的函数解析式为( )
    A.y=-3xB.y=x
    C.y=3x-1D.y=1-3x
    8、(4分)已知多项式是一个关于的完全平方式,则的值为( )
    A.3B.6C.3或-3D.6或-6
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)用配方法解一元二次方程x2-mx=1时,可将原方程配方成(x-3)2=n,则m+n的值是 ________ .
    10、(4分)如图,矩形纸片,,,点在边上,将沿折叠,点落在点处,,分别交于点,,且,则的值为_____________.
    11、(4分)某校举行“纪念香港回归21周年”演讲比赛,共有15名同学进入决赛(决赛成绩互不相同),比赛将评出金奖1名,银奖3名,铜奖4名.某参赛选手知道自己的分数后,要判断自己能否获奖,他应当关注的是有关成绩的________.(填“平均数”“中位数”或“众数”)
    12、(4分)如图,在△ABC中,D、E分别为AB、AC的中点,点F在DE上,且AF⊥CF,若AC=3,BC=5,则DF=_____.
    13、(4分)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在中,是的中点,,的延长线相交于点,
    (1)求证:;
    (2)若,且,求的长.
    15、(8分)如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.
    (1)求一次函数解析式;
    (2)求C点的坐标;
    (3)求△AOD的面积.
    16、(8分)因式分解
    (1)
    (2)
    (3)
    (4)
    17、(10分)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间 x(小时)之间的函数图象.
    (1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;
    (2)当它们行驶7了小时时,两车相遇,求乙车速度.
    18、(10分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.
    并整理分析数据如下表:
    (1)求,,的值;
    (2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在菱形ABCD中,∠A=60,对角线BD=3,以BD为底边作顶角为120的等腰三角形BDE,则AE的长为______.
    20、(4分)外角和与内角和相等的平面多边形是_______________.
    21、(4分)已知:一组邻边分别为和的平行四边形,和的平分线分别交所在直线于点,,则线段的长为________.
    22、(4分)元旦期间,张老师开车从汕头到相距150千米的老家探亲,如果油箱里剩余油量(升)与行驶里程 (千米)之间是一次函数关系,其图象如图所示,那么张老师到达老家时,油箱里剩余油量是_______升.
    23、(4分)在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2OB2.则点B2的坐标_______
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知在中,对角线,,平分交的延长线于点,连接.
    (1)求证:.
    (2)设,连接交于点.画出图形,并求的长.
    25、(10分)如图①,中,,点为边上一点,于点,点为中点,点为中点,的延长线交于点,≌.
    (1)求证:;
    (2)求的大小;
    (3)如图②,过点作交的延长线于点,求证:四边形为矩形.
    26、(12分)如图,在平面直角坐标系中,四边形为正方形,已知点、,点、在第二象限内.
    (1)点的坐标___________;
    (2)将正方形以每秒个单位的速度沿轴向右平移秒,若存在某一时刻,使在第一象限内点、两点的对应点、正好落在某反比例函数的图象上,请求出此时的值以及这个反比例函数的解析式;
    (3)在(2)的情况下,问是否存在轴上的点和反比例函数图象上的点,使得以、、、四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点、的坐标;若不存在,请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.
    故选D.
    2、C
    【解析】
    直接利用二次根式的乘法运算法则,计算得出答案.
    【详解】
    解:,
    故选择:C.
    此题主要考查了二次根式的乘法运算,正确化简二次根式是解题的关键.
    3、B
    【解析】
    A.可判断为菱形,故本选项错误,
    B.对角线相等的菱形是正方形,故本选项正确,
    C.正方形的两条对角线相等,且互相垂直平分,故本选项错误,
    D.菱形的对角线不一定相等,故本选项错误,
    故选B.
    4、D
    【解析】
    根据矩形点的性质可得AD∥BC,AD=BC,再求出AE的长度,再根据勾股定理列式求出BE的长,然后根据角平分线的定义求出∠BEF=∠DEF,根据两直线平行,内错角相等求出∠BFE=∠DEF,再求出BEF=∠BFE,根据等角对等边可得BE=BF,然后根据FC=BC-BF代入数据计算即可得解.
    【详解】
    解:在矩形ABCD中,AD∥BC,AD=BC=8,
    ∵E为AD的中点,
    ∴AE=AD=×8=4,
    在Rt△ABE中,,
    ∵EF是∠BED的角平分线,
    ∴∠BEF=∠DEF,
    ∵AD∥BC,
    ∴∠BFE=∠DEF,
    ∴BEF=∠BFE,
    ∴BE=BF,
    ∴FC=BC-BF=8-5=1.
    故选:D.
    本题考查了矩形的性质,勾股定理的应用,两直线平行,内错角相等的性质,等角对等边的性质,熟记各性质是解题的关键.
    5、C
    【解析】
    根据不等式的运算、相似三角形的判定定理、补角的性质、直角的性质对各命题进行判断即可.
    【详解】
    (1)如果a<0,b>0,那么a+b的值不确定,错误;
    (2)如果两个三角形的3个角对应相等,那么这两个三角形相似,错误;
    (3)同角的补角相等,正确;
    (4)直角都相等,正确;
    故真命题的个数是2个
    故答案为:C.
    本题考查了命题的问题,掌握不等式的运算、相似三角形的判定定理、补角的性质、直角的性质是解题的关键.
    6、D
    【解析】
    试题分析:A、a<0,则a是负数,a+5<a+7可以看作5<7两边同时加上a,故A选项正确;
    B、5a>7a可以看作5<7两边同时乘以一个负数a,不等号方向改变,故B选项正确;
    C、5﹣a<7﹣a是不等号两边同时加上﹣a,不等号不变,故C选项正确;
    D、a<0,>可以看作>两边同时乘以一个负数a,不等号方向改变,故D选项错误.
    故选D.
    考点:不等式的性质.
    7、A
    【解析】
    设这条过原点的直线的解析式为:y=kx,
    ∵该直线过点P(-1,3),
    ∴-k=3,即k=-3,
    ∴这条直线的解析式为:y=-3x.
    故选A.
    8、D
    【解析】
    利用完全平方公式的结构特征判断即可确定出m的值.
    【详解】
    ∵x2+mx+9是关于x的完全平方式,
    ∴x2+mx+9= x2±2×3×x+9
    ∴m=±6,
    故选:D.
    此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、16
    【解析】
    因为配方成的方程和原方程是等价的,故只要把两个方程展开合并,根据方程的每项系数相等列式求解即可求出m+n的值.
    【详解】
    解:由题意得: x2-mx-1=(x-3)2-n=x2-6x+9-n,
    则-m=-6,∴m=6,
    -1=9-n, ∴n=10,
    ∴m+n=10+6=16.
    故答案为:16
    本题考查了一元二次方程,等价方程的对应项及其系数相同,正确理解题意是解题的关键.
    10、
    【解析】
    由矩形的性质和已知条件,可判定,设,根据全等三角形的性质及矩形的性质可用含x的式子表示出DF和AF的长,在根据勾股定理可求出x的值,即可确定AF的值.
    【详解】
    解:四边形ABCD是矩形,
    ,,
    是由沿折叠而来的
    , ,

    (AAS)

    设,则
    在中,根据勾股定理得:
    ,即
    解得

    故答案为:
    本题考查了求多边形中的线段长,主要涉及的知识点有矩形的性质,全等三角形的判定与性质,勾股定理,数学的方程思想,用同一个字母表示出直角三角形中的三边长是解题的关键.
    11、中位数
    【解析】
    试题分析:中位数表示的是这15名同学中成绩处于第八名的成绩,如果成绩是中位数以前,则肯定获奖,如果成绩是中位数以后,则肯定没有获奖.
    考点:中位数的作用
    12、1
    【解析】
    根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,计算即可.
    【详解】
    解:∵D、E分别为AB、AC的中点,
    ∴DE=BC=2.5,
    ∵AF⊥CF,E为AC的中点,
    ∴EF=AC=1.5,
    ∴DF=DE﹣EF=1,
    故答案为:1.
    本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    13、1或1.
    【解析】
    试题分析:分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,
    ①当30度角是等腰三角形的顶角时,如图1中,
    当∠A=30°,AB=AC时,设AB=AC=a,
    作BD⊥AC于D,∵∠A=30°,
    ∴BD=AB=a,
    ∴•a•a=5,
    ∴a2=1,
    ∴△ABC的腰长为边的正方形的面积为1.
    ②当30度角是底角时,如图2中,
    当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,
    ∵AB=AC,
    ∴∠ABC=∠C=30°,
    ∴∠BAC=11°,∠BAD=60°,
    在RT△ABD中,∵∠D=90°,∠BAD=60°,
    ∴BD=a,
    ∴•a•a=5,
    ∴a2=1,
    ∴△ABC的腰长为边的正方形的面积为1.
    考点:正方形的性质;等腰三角形的性质.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2).
    【解析】
    (1)由“ASA”可证△AEF≌△DEC;
    (2)由直角三角形的性质可得,即可求BC的长.
    【详解】
    解:(1)∵四边形ABCD是平行四边形
    ∴AB∥CD,AD=BC
    ∴∠EAF=∠D,
    ∵点E是AD中点,
    ∴AE=DE,且∠EAF=∠D,∠AEF=∠CED
    ∴△AEF≌△DEC(ASA)
    (2)∵∠FCB=90°,AD∥BC
    ∴∠CED=90°,且∠D=30°,CD=3cm,


    .
    本题考查了平行四边形的性质,全等三角形的判定和性质,熟练运用平行四边形的性质是本题的关键.
    15、(1)y=x+1;(2)C(0,1);(3)1
    【解析】
    试题分析:(1)首先根据正比例函数解析式求得m的值,再进一步运用待定系数法求得一次函数的解析式;
    (2)根据(1)中的解析式,令x=0求得点C的坐标;
    (3)根据(1)中的解析式,令y=0求得点D的坐标,从而求得三角形的面积.
    试题解析:
    (1)∵正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),
    ∴2m=2,
    m=1.
    把(1,2)和(-2,-1)代入y=kx+b,得

    解得:

    则一次函数解析式是y=x+1;
    (2)令x=0,则y=1,即点C(0,1);
    (3)令y=0,则x=-1.
    则△AOD的面积=.
    【点睛】运用了待定系数法求函数解析式、直线与坐标轴的交点的求法.
    16、(1);(2);(3);(4)
    【解析】
    (1)先提取公因式,然后用完全平方公式进行因式分解;(2)直接用平方差公式进行因式分解;(3)先提取公因式,然后用平方差公式进行因式分解;(4)先用平方差公式进行因式分解,然后再用完全平方公式进行因式分解
    【详解】
    解:(1)
    =
    =
    (2)
    =
    (3)
    =
    =
    (4)
    =
    =
    本题考查了因式分解方法、乘法公式应用,考查推理能力与计算能力,属于基础题.
    17、(1)
    (2)75(千米/小时)
    【解析】
    (1)先根据图象和题意知道,甲是分段函数,所以分别设0(2)注意相遇时是在6-14小时之间,求交点时应该套用甲中的函数关系式为y=-75x+1050,直接把x=7代入即可求相遇时y的值,再求速度即可.
    【详解】
    (1)①当0把点(6,600)代入得
    k1=100
    所以y=100x;
    ②当6∵图象过(6,600),(14,0)两点

    解得
    ∴y=−75x+1050

    (2)当x=7时,y=−75×7+1050=525,
    V乙==75(千米/小时).
    18、(1)a=7,b=7.5,c=4.2;(2)见解析.
    【解析】
    (1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;
    (2)结合平均数和中位数、众数、方差三方面的特点进行分析.
    【详解】
    (1)甲的平均成绩a==7(环),
    ∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,
    ∴乙射击成绩的中位数b==7.5(环),
    其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]
    =×(16+9+1+3+4+9)
    =4.2;
    (2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;
    综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.
    本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、或2
    【解析】
    四边形ABCD为菱形,∠A=60,BD=3,得△ABD为边长为3等边三角形,分别讨论A,E在同侧和异侧的情况,在通过∠ BED=120°算出即可
    【详解】
    画出示意图,分别讨论A,E在同侧和异侧的情况,
    ∵四边形ABCD为菱形,∠A=60,BD=3,
    ∴△ ABD为边长为3等边三角形,则AO=,
    ∵∠ BED=120°,则∠ OBE=30°,可得OE=,
    则AE=,
    同理可得OE’=,则AE’=,
    所以AE的长度为或
    本题考查菱形的性质、等腰三角形的性质等知识,解题的关键是正确画出图形,考虑问题要全面,属于中考常考题型.
    20、四边形
    【解析】
    设此多边形是n边形,根据多边形内角与外角和定理建立方程求解.
    【详解】
    设此多边形是n边形,由题意得:
    解得
    故答案为:四边形.
    本题考查多边形内角和与外角和,熟记n边形的内角和公式,外角和都是360°是解题的关键.
    21、或
    【解析】
    利用当AB=10cm,AD=6cm,由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则DE=AD=6cm;同理可得:CF=CB=6cm,而EF=CF+DE-DC,由此可以求出EF长;同理可得:当AD=10cm,AB=6cm时,可以求出EF长
    【详解】
    解:如图1,当AB=10cm,AD=6cm
    ∵AE平分∠BAD
    ∴∠BAE=∠DAE,
    又∵AD∥CB
    ∴∠EAB=∠DEA,
    ∴∠DAE=∠AED,则AD=DE=6cm
    同理可得:CF=CB=6cm
    ∵EF=DE+CF-DC=6+6-10=2(cm)
    如图2,当AD=10cm,AB=6cm,
    ∵AE平分∠BAD,
    ∴∠BAE=∠DAE
    又∵AD∥CB
    ∴∠EAB=∠DEA,
    ∴∠DAE=∠AED则AD=DE=10cm
    同理可得,CF=CB=10cm EF=DE+CF-DC=10+10-6=14(cm)
    故答案为:2或14.
    图1 图2
    本题主要考查了角平分线的定义、平行四边形的性质、平行线的性质等知识,关键是平行四边形的不同可能性进行分类讨论.
    22、20
    【解析】
    先运用待定系数法求出y与x之间的函数关系式,然后把x=150代入解析式就可以求出y的值,从而得出剩余的油量.
    【详解】
    解:设y与x之间的函数关系式为y=kx+b,由函数图象,得

    解得: ,
    则y=﹣0.1x+1.
    当x=150时,
    y=﹣0.1×150+1=20(升).
    故答案为20
    本题考查了一次函数的应用,正确读懂函数图像,利用待定系数法求函数解析式并代入求值是解题的关键.
    23、()
    【解析】
    根据题意得出B点坐标变化规律,进而得出点B2018的坐标位置,进而得出答案.
    【详解】
    解:∵△AOB是等腰直角三角形,OA=1,
    ∴AB=OA=1,
    ∴B(1,1),
    将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,
    再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,
    ∴每4次循环一周,B1(2,-2),B2(-4,-4),B3(-8,8),B4(16,16),
    ∵2÷4=503…1,
    ∴点B2与B1同在一个象限内,
    ∵-4=-22,8=23,16=24,
    ∴点B2(22,-22).
    故答案为:(22,-22).
    此题主要考查了点的坐标变化规律,得出B点坐标变化规律是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2).
    【解析】
    (1)根据角平分线的性质可得∠ADE=∠CDE,再根据平行四边形的性质和平行线的性质可得∠CDE=∠AED,利用等量代换可得∠ADE=∠AED,根据等角对等边可得AD=AE;
    (2)首先利用直角三角形的性质计算出BD,根据勾股定理可得AB长,然后再根据平行四边形的性质得出,,再利用勾股定理可得OA的值,进而可得答案.
    【详解】
    (1)证明:∵DE平分∠ADC,
    ∴∠ADE=∠CDE,
    ∵四边形ABCD是平行四边形,
    ∴CD∥AB,
    ∴∠CDE=∠AED,
    ∴∠ADE=∠AED,
    ∴AD=AE;
    (2)解:在中,∠DAB=30°,AD=12,
    ∴,
    ∴,
    ∵四边形ABCD是平行四边形,
    ∴,,
    在中,,
    ∴.
    本题主要考查了平行四边形的性质,直角三角形的性质,角平分线的性质以及勾股定理的应用,解题的关键是掌握平行四边形的对角线互相平分.
    25、(1)证明见解析;(2)∠MEF=30°;(3)证明见解析.
    【解析】
    (1)利用直角三角形斜边中线的性质定理可得CM=DB,EM=DB,问题得证;
    (2)利用全等三角形的性质,证明△DEM是等边三角形,即可解决问题;
    (3)设FM=a,则AE=CM=EM=a,EF=2a,推出,,得到AN∥PM,易证四边形ANMP是平行四边形,结合∠P=90°即可解决问题.
    【详解】
    解:(1)证明:如图①中,
    ∵DE⊥AB,
    ∴∠DEB=∠DCB=90°,
    ∵DM=MB,
    ∴CM=DB,EM=DB,
    ∴CM=EM;
    (2)解:∵△DAE≌△CEM,CM=EM,
    ∴AE=ED=EM=CM=DM,∠AED=∠CME=90°
    ∴△ADE是等腰直角三角形,△DEM是等边三角形,
    ∵∠AED=∠DEF=90°,∠DEM=60°,
    ∴∠MEF=30°;
    (3)证明:如图②中,设FM=a.
    由(2)可知△ADE是等腰直角三角形,△DEM是等边三角形,∠MEF=30°,
    ∴AE=CM=EM=a,EF=2a,
    ∵CN=NM,
    ∴MN=a,
    ∴,,
    ∴EM∥AN,
    ∵AP⊥PM,MN⊥PM,
    ∴AP∥MN,
    ∴四边形ANMP是平行四边形,
    ∵∠P=90°,
    ∴四边形ANMP是矩形.
    本题考查了全等三角形的性质、等腰直角三角形的判定和性质、等边三角形的判定和性质、直角三角形斜边中线定理、平行线分线段成比例定理以及矩形的判定等知识,解题的关键是灵活运用所学知识进行推理论证,学会利用参数解决问题,属于中考压轴题.
    26、(1)点坐标为;(2),;(3)存在,,或,或,
    【解析】
    (1)证明△DFA≌△AEB(AAS),则DF=AE=3,BE=AF=1,即可求解;
    (2)t秒后,点D′(−7+2t,3)、B′(−3+2t,1),则k=(−7+2t)×3=(−3+2t)×1,即可求解;
    (3)分为平行四边形的一条边时和为平行四边形对角线时两种情况,分别求解即可.
    【详解】
    解:(1)过点、分别作轴、轴交于点、,
    ,,,
    又,,,,,
    点坐标为;
    (2)秒后,点、,
    则,解得:,则,
    (3)存在,理由:
    设:点,点,,
    ①在第一象限,且为平行四边形的一条边时,图示平行四边形,点向左平移个单位、向上平移个单位得到点,
    同理点向左平移个单位、向上平移个单位为得到点,即:,,,
    解得:,,,
    故点、点;
    ②在第一象限,且当为平行四边形对角线时,图示平行四边形,中点坐标为,
    该中点也是的中点,
    即:,,,
    解得:,,,
    故点、;
    ③在第三象限,且当为平行四边形的一条边时,图示平行四边形,点向左平移个单位、向上平移个单位得到点,
    同理点向右平移个单位、向下平移个单位为得到点,即:,,,
    解得:,,,
    故点、点;
    综上:,或,或,
    本题考查的是反比例函数综合运用,涉及到三角形全等、图形平移等知识点,其中(3),要通过画图确定图形可能的位置再求解,避免遗漏.
    题号





    总分
    得分
    批阅人
    平均成绩/环
    中位数/环
    众数/环
    方差

    7
    7
    1.2

    7
    8

    相关试卷

    2025届山东省青岛市温泉中学数学九年级第一学期开学达标检测模拟试题【含答案】:

    这是一份2025届山东省青岛市温泉中学数学九年级第一学期开学达标检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省博兴县九上数学开学教学质量检测模拟试题【含答案】:

    这是一份2025届山东省博兴县九上数学开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山东省青岛五校联考数学九上开学教学质量检测模拟试题【含答案】:

    这是一份2024年山东省青岛五校联考数学九上开学教学质量检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map