终身会员
搜索
    上传资料 赚现金

    2025届山东省日照市莒县九上数学开学教学质量检测试题【含答案】

    立即下载
    加入资料篮
    2025届山东省日照市莒县九上数学开学教学质量检测试题【含答案】第1页
    2025届山东省日照市莒县九上数学开学教学质量检测试题【含答案】第2页
    2025届山东省日照市莒县九上数学开学教学质量检测试题【含答案】第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届山东省日照市莒县九上数学开学教学质量检测试题【含答案】

    展开

    这是一份2025届山东省日照市莒县九上数学开学教学质量检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在,,,,中,分式的个数是( )
    A.1B.2C.3D.4
    2、(4分)在下列条件中,不能确定四边形ABCD为平行四边形的是( ).
    A.∠A=∠C,∠B=∠DB.∠A+∠B=180°,∠C+∠D=180°
    C.∠A+∠B=180°,∠B+∠C=180°D.∠A=∠B=∠C=90°
    3、(4分)如图,一次函数y=kx+b的图象经过点A(1,0),B(2,1),当因变量y>0时,自变量x的取值范围是( )
    A.x>0B.x<0C.x>1D.x<1
    4、(4分)已知,则的值为( )
    A.B.-2C.D.2
    5、(4分)两个相似三角形的最短边分别为4cm和2cm它们的周长之差为12cm,那么大三角形的周长为( )
    A.18cmB.24cmC.28cmD.30cm
    6、(4分)如图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动到点A停止,设点P运动路程为x,△ABP的面积为y,如果y关于x的函数图象如图(2)所示,则矩形ABCD的面积是( )
    A.10B.16C.20D.36
    7、(4分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )
    A.0.7米B.1.5米C.2.2米D.2.4米
    8、(4分)若(为整数),则的值可以是( )
    A.6B.12C.18D.24
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)下列命题:
    ①矩形的对角线互相平分且相等;
    ②对角线相等的四边形是矩形;
    ③菱形的每一条对角线平分一组对角;
    ④一条对角线平分一组对角的平行四边形是菱形.
    其中正确的命题为________(注:把你认为正确的命题序号都填上)
    10、(4分)已知是一元二次方程的两实根,则代数式_______.
    11、(4分)边长为的正方形ABCD与直角三角板如图放置,延长CB与三角板的一条直角边相交于点E,则四边形AECF的面积为________.
    12、(4分)某单位向一所希望小学赠送1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设A型包装箱每个可以装件文具,根据题意列方程为 .
    13、(4分)一组数据2,3,4,5,3的众数为__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)有下列命题
    ①一组对边平行,一组对角相等的四边形是平行四边形.
    ②两组对角分别相等的四边形是平行四边形.
    ③一组对边相等,一组对角相等的四边形是平行四边形.
    ④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.
    (1)上述四个命题中,是真命题的是 (填写序号);
    (2)请选择一个真命题进行证明.(写出已知、求证,并完成证明)
    已知: .
    求证: .
    证明:
    15、(8分)以下是八(1)班学生身高的统计表和扇形统计图,请回答以下问题:

    (1)求出统计表和统计图缺的数据.
    (2)八(1)班学生身高这组数据的中位数落在第几组?
    (3)如果现在八(1)班学生的平均身高是1.63m,已确定新学期班级转来两名新同学,新同学的身高分别是1.54m和1.77m,那么这组新数据的中位数落在第几组?
    16、(8分)如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.
    (1)求∠BAC的度数。
    (2)若AC=2,求AD的长。
    17、(10分)先化简,再求值:,其中,
    18、(10分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.
    (1)请填写下表
    (2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;
    (3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知a2-2ab+b2=6,则a-b=_________.
    20、(4分)地图上某地的面积为100cm1,比例尺是l:500,则某地的实际面积是_______m1.
    21、(4分)不等式组的所有整数解的积是___________.
    22、(4分)函数为任意实数)的图象必经过定点,则该点坐标为____.
    23、(4分)将直线y=2x+1向下平移2个单位,所得直线的表达式是__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)下面是某公司16名员工每人所创的年利润(单位:万元)
    5 3 3 5 5 10 8 5 3 5 5 8 3 5 8 5
    (1)完成下列表格:
    (2)这个公司平均每人所创年利润是多少?
    25、(10分)已知在▱ABCD中,点E、F在对角线BD上,BE=DF,点M、N在BA、DC延长线上,AM=CN,连接ME、NF.试判断线段ME与NF的关系,并说明理由.
    26、(12分)全国两会民生话题成为社会焦点,我市记者为了解百姓“两会民生话题”的聚焦点,随机调查了我市部分市民,并对调查结果进行整理,绘制了如图所示的两幅不完整的统计图表.
    请根据图表中提供的信息解答下列问题:
    (1)填空:m= ,n= ,扇形统计图中E组所占的百分比为 %;
    (2)我市人口现有650万,请你估计其中关注D组话题的市民人数.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
    【详解】
    解:,的分母中含有字母是分式,其他的分母中不含有字母不是分式,
    故选:B.
    考查了分式的定义,一般地,如果A,B表示两个整式,并且B中含有字母,那么式子 叫做分式.
    2、B
    【解析】
    根据平行四边形的多种判定方法,分别分析A、B、C、D选项是否可以证明四边形ABCD为平行四边形,即可解题.
    【详解】
    A.∠A=∠C,∠B=∠D,根据四边形的内角和为360°,可推出∠A+∠B=180°,所以AD∥BC,同理可得AB∥CD,所以四边形ABCD为平行四边形,故A选项正确;
    B.∠A+∠B=180°,∠C+∠D=180°即可证明AD∥BC,条件不足,不足以证明四边形ABCD为平行四边形,故B选项错误.
    C.∠A+∠B=180°,∠B+∠C=180°即可证明AB∥CD,AD∥BC,根据平行四边形的定义可以证明四边形ABCD为平行四边形,故C选项正确;
    D.∠A=∠B=∠C=90°,则∠D=90°,四个内角均为90°可以证明四边形ABCD为矩形,故D选项正确;
    故选B.
    3、C
    【解析】
    由一次函数图象与x轴的交点坐标结合函数图象,即可得出:当x>1时,y>1,此题得解.
    【详解】
    解:观察函数图象,可知:当x>1时,y>1.
    故选:C.
    本题考查了一次函数图象上点的坐标特征、一次函数的图象以及一次函数的性质,观察函数图象,利用数形结合解决问题是解题的关键.
    4、C
    【解析】
    首先根据x的范围确定x−3与x−2的符号,然后即可化简二次根式,然后合并同类项即可.
    【详解】
    ∵,
    ∴x−3<0,x−2<0,
    ∴=3−x+(2−x)=5−2x.
    故选:C.
    本题主要考查了二次根式的化简,化简时要注意二次根式的性质:=|a|.
    5、B
    【解析】
    利用相似三角形周长的比等于相似比得到两三角形的周长的比为2:1,于是可设两三角形的周长分别为2xcm,xcm,所以2x﹣x=12,然后解方程求出x后,得出2x即可.
    【详解】
    解:∵两个相似三角形的最短边分别为4cm和2cm,
    ∴两三角形的周长的比为4:2=2:1,
    设两三角形的周长分别为2xcm,xcm,
    则2x﹣x=12,
    解得x=12,
    所以2x=24,
    即大三角形的周长为24cm.
    故选:B.
    本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.
    6、C
    【解析】
    点P从点B运动到点C的过程中,y与x的关系是一个一次函数,运动路程为4时,面积发生了变化,说明BC的长为4,当点P在CD上运动时,三角形ABP的面积保持不变,就是矩形ABCD面积的一半,并且动路程由4到9,说明CD的长为5,然后求出矩形的面积.
    【详解】
    解:∵当4≤x≤9时,y的值不变即△ABP的面积不变,P在CD上运动当x=4时,P点在C点上所以BC=4当x=9时,P点在D点上∴BC+CD=9
    ∴CD=9-4=5
    ∴△ABC的面积S=AB•BC=×4×5=10
    ∴矩形ABCD的面积=2S=20
    故选:C.
    本题考查的是动点问题的函数图象,根据矩形中三角形ABP的面积和函数图象,求出BC和CD的长,再用矩形面积公式求出矩形的面积.
    7、C
    【解析】
    在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.
    【详解】
    在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.
    本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.
    8、C
    【解析】
    根据(n为整数),可得:m的值等于一个整数的平方与2的乘积,据此求解即可.
    【详解】
    ∵(n为整数),
    ∴m的值等于一个整数的平方与2的乘积,
    ∵12=22×3,1=32×2,24=22×6,
    ∴m的值可以是1.
    故选:C.
    此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、①③④
    【解析】
    根据正方形、平行四边形、菱形和矩形的判定,对选项一一分析,选择正确答案.
    【详解】
    ①矩形的对角线互相平分且相等,故正确;
    ②对角线相等的平行四边形是矩形,故错误;
    ③菱形的每一条对角线平分一组对角,这是菱形的一条重要性质,故正确;
    ④一条对角线平分一组对角的平行四边形是菱形,故正确.
    故答案为①③④.
    考查了正方形、平行四边形、菱形和矩形的判定方法.解答此题的关键是熟练掌握运用这些判定.
    10、
    【解析】
    根据韦达定理得,再代入原式求解即可.
    【详解】
    ∵是一元二次方程的两实根


    故答案为:.
    本题考查了一元二次方程根与系数的问题,掌握韦达定理是解题的关键.
    11、5
    【解析】
    由四边形ABCD为正方形可以得到∠D=∠B=90°,AD=AB,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE,所以可以证明△AEB≌△AFD,所以S =S,那么它们都加上四边形ABCF的面积,即可四边形AECF的面积=正方形的面积,从而求出其面积.
    【详解】
    ∵四边形ABCD为正方形,
    ∴∠D=∠ABC=90°,AD=AB,
    ∴∠ABE=∠D=90°,
    ∵∠EAF=90°,
    ∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,
    ∴∠DAF=∠BAE,
    ∴△AEB≌△AFD(ASA),
    ∴S =S ,
    ∴它们都加上四边形ABCF的面积,
    可得到四边形AECF的面积=正方形的面积=5.
    故答案为:5.
    此题考查全等三角形的判定与性质,正方形的性质,解题关键在于掌握判定定理.
    12、
    【解析】
    单独使用B型包装箱比单独使用A型包装箱可少用12个;可列等量关系为:所用B型包装箱的数量+12=所用A型包装箱的数量,由此可得到所求的方程
    【详解】
    解:根据题意,得:
    13、1.
    【解析】
    众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.
    【详解】
    本题中数据1出现了2次,出现的次数最多,所以本题的众数是1.
    故答案为1.
    众数是指一组数据中出现次数最多的数据.
    三、解答题(本大题共5个小题,共48分)
    14、(1)①②④(2)在四边形ABCD中,∠A=∠C,∠B=∠D;四边形ABCD是平行四边形
    【解析】
    (1)根据平行线的判定定理写出真命题;
    (2)乙②为例,写出已知、求证.利用四边形的内角和和已知条件中的对角相等得到邻角互补,从而判定两组对边平行,进而证得结论.
    【详解】
    (1)①一组对边平行,一组对角相等的四边形是平行四边形.故正确;
    ②两组对角分别相等的四边形是平行四边形.故正确;
    ③一组对边相等,一组对角相等的四边形不一定是平行四边形.故错误;
    ④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.故正确.
    故答案是:①②④;
    (2)以②为例:
    已知:在四边形ABCD中,∠A=∠C,∠B=∠D,
    求证:四边形ABCD是平行四边形.
    证明:∵∠1+∠2=180°﹣∠A,∠2+∠1=180°﹣∠C,∠A=∠C,
    ∴∠1+∠2=∠2+∠1.①
    ∵∠ABC=∠ADC,
    即∠1+∠2=∠2+∠1,②
    由①②相加、相减得:∠1=∠1,∠2=∠2.
    ∴AB∥CD,AD∥BC.
    ∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).
    故答案是:在四边形ABCD中,∠A=∠C,∠B=∠D;四边形ABCD是平行四边形.
    本题考查了平行四边形的判定,解题的关键是了解平行四边形的几个判定定理,难度不大.
    15、(1)第二组4,第四组18,第三组38%,第五组16%,(2)中位数落在第四组;(3)中位数落在第四组.
    【解析】
    (1)先用第三、五组的人数和除以对应的百分比求出总人数,再用总人数分别乘以第二、四组的百分比求得其人数,根据百分比的概念求出第三、五组的百分比可得答案;
    (2)根据中位数的概念求解可得;
    (3)根据中位数的概念求解可得.
    【详解】
    (1)由图知,第一组占2%,所以,总人数:=50,
    第二组:8%×50=4,
    第四组:50-1-4-19-8=18,
    第三组:=38%,第五组:=16%,
    (2)八(1)班学生身高这组数据的中位数落在第四组;
    (3)转来两名新同学后,共有52名同学,中位数是第26、27名的平均数,
    所以,中位数落在第四组。
    本题考查了扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
    16、 (1)∠BAC=75°
    (2)
    AD=.
    【解析】
    试题分析:(1)根据三角形内角和定理,即可推出∠BAC的度数;
    (2)由题意可知AD=DC,根据勾股定理,即可推出AD的长度.
    (1)∠BAC=180°-60°-45°=75°;
    (2)∵AD⊥BC,
    ∴△ADC是直角三角形,
    ∵∠C=45°,
    ∴∠DAC=45°,
    ∴AD=DC,
    ∵AC=2,
    考点:本题主要考查勾股定理、三角形内角和定理
    点评:解答本题的关键是根据三角形内角和定理推出AD=DC.
    17、
    【解析】
    先利用二次根式的性质化简,合并后再把已知条件代入求值.
    【详解】
    原式=
    当,y= 4时
    原式=
    本题主要考查了二次根式的化简求值,注意先化简代数式,再进一步代入求得数值.
    18、(1)x﹣60、300﹣x、260﹣x;(2)w=10x+10200(60≤x≤260);(3)m的取值范围是0<m≤1.
    【解析】
    分析:(1)根据题意可以将表格中的空缺数据补充完整;
    (2)根据题意可以求得w与x的函数关系式,并写出x的取值范围;
    (3)根据题意,利用分类讨论的数学思想可以解答本题.
    详解:(1)∵D市运往B市x吨,
    ∴D市运往A市(260﹣x)吨,C市运往B市(300﹣x)吨,C市运往A市200﹣(260﹣x)=(x﹣60)吨,
    故答案为:x﹣60、300﹣x、260﹣x;
    (2)由题意可得,
    w=20(x﹣60)+25(300﹣x)+15(260﹣x)+30x=10x+10200,
    ∴w=10x+10200(60≤x≤260);
    (3)由题意可得,
    w=10x+10200﹣mx=(10﹣m)x+10200,
    当0<m<10时,
    x=60时,w取得最小值,此时w=(10﹣m)×60+10200≥10320,
    解得,0<m≤1,
    当m>10时,
    x=260时,w取得最小值,此时,w=(10﹣m)×260+10200≥10320,
    解得,m≤,
    ∵<10,
    ∴m>10这种情况不符合题意,
    由上可得,m的取值范围是0<m≤1.
    点睛:本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    由题意得(a-b)2="6," 则=
    20、1500
    【解析】
    设某地的实际面积为xcm1,
    则100:x=(1:500)1,
    解得x=15000000cm1.
    15000000cm1=1500m1.
    ∴某地的实际面积是1500平方米.
    21、1
    【解析】
    先解不等式组得到-1<x≤3,再找出此范围内的整数,然后求这些整数的积即可.
    【详解】
    由1-2x<3,得:x>-1,
    由 ≤2,得:x≤3,
    所以不等式组的解集为:-1<x≤3,
    它的整数解为1、1、2、3,
    所有整数解的积是1.
    故答案为1.
    此题考查了一元一次不等式组的整数解.解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
    22、 (1,2)
    【解析】
    先把函数解析式化为y=k(x-1)+2的形式,再令x=1求出y的值即可.
    【详解】
    解:函数可化为,
    当,即时,,
    该定点坐标为.
    故答案为:.
    本题考查的是一次函数图象上点的坐标特点,把原函数的解析式化为y=k(x-1)+2的形式是解答此题的关键.
    23、
    【解析】
    由题意得:平移后的解析式为:y=2x+1-2=2x-1,
    即.所得直线的表达式是y=2x-1.
    故答案为y=2x-1.
    二、解答题(本大题共3个小题,共30分)
    24、(1)答案见解析;(2)5.375万元.
    【解析】
    (1)直接由数据求解即可求得答案;
    (2)根据加权平均数的计算公式列式计算即可得.
    【详解】
    解:1)完成表格如下:
    (2)这个公司平均每人所创年利润是=5.375(万元).
    本题考查了统计表、加权平均数,熟练掌握加权平均数的计算公式是解题的关键.
    25、ME=NF且ME∥NF,理由见解析
    【解析】
    利用SAS证得△BME≌△DNF后即可证得结论.
    【详解】
    证明:ME=NF且ME∥NF.理由如下:
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠EBM=∠FDN,AB=CD,
    ∵AM=CN,
    ∴MB=ND,
    ∵BE=DF,
    ∴BF=DE,
    ∵在△BME和△DNF中

    ∴△BME≌△DNF(SAS),
    ∴ME=NF,∠MEB=∠NFD,
    ∴∠MEF=∠BFN.
    ∴ME∥NF.
    ∴ME=NF且ME∥NF.
    此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.
    26、(1)40、100、15;(2)195万人.
    【解析】
    (1)先由A组人数及其所占百分比求出总人数,总人数乘以B组对应百分比可得m的值,由各组人数之和等于总人数可得n的值,最后依据百分比概念可得E组对应百分比;
    (2)总人数乘以样本中对应的百分比可得.
    【详解】
    解:(1)∵被调查的总人数为80÷20%=400,
    ∴m=400×10%=40,n=400-(80+40+120+60)=100,
    扇形统计图中E组所占的百分比为 ×100%=15%,
    故答案为:40、100、15;
    (2)估计其中关注D组话题的市民人数为650× =195(万人).
    故答案为:(1)40、100、15;(2)195万人.
    本题考查频数(率)分布表,扇形统计图,读懂统计图表,从统计图表中获取有用信息是解题的关键.也考查了用样本估计总体.
    题号





    总分
    得分
    批阅人
    A(吨)
    B(吨)
    合计(吨)
    C


    240
    D

    x
    260
    总计(吨)
    200
    300
    500
    每人所创年利润/万元
    10
    8
    5
    3
    人数
    1


    4
    每人所创年利润/万元
    10
    8
    5
    3
    人数
    1
    3
    8
    4

    相关试卷

    2025届山东省日照市数学九上开学教学质量检测试题【含答案】:

    这是一份2025届山东省日照市数学九上开学教学质量检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省莒县九年级数学第一学期开学教学质量检测模拟试题【含答案】:

    这是一份2025届山东省莒县九年级数学第一学期开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省博兴县九上数学开学教学质量检测模拟试题【含答案】:

    这是一份2025届山东省博兴县九上数学开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map